AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Overview

LITMUS Predictor

LITMUS Predictor provides support for simulating performance in ~100 languages given training observations of the desired task-model. Each training observation specifies the finetuning-datasize + test-performance in different languages.

Further, the tool provides support for constructing a data-collection strategy to maximize performance in desired targets subject to different constraints.

Installation

pip install -U pip
pip install -r requirements.txt

Usage

litmus/litmus_mixing.py contains the implementation of the LITMUS Predictor which can be trained on observations of different task-model trainings.

usage: LITMUS Tool [-h] [--scores_file SCORES_FILE]
                   [--train_format {json,csv}] [--save_state SAVE_STATE]
                   [--load_state LOAD_STATE]
                   [--precomputed_features PRECOMPUTED_FEATURES]
                   [--pivot_features {none,all,data_only}] [--use_all_langs]
                   [--common_scaling] [--training_algorithm {xgboost,mlp}]
                   [--error_method {LOO,LOTO,split,kfold,manual_split}]
                   [--data_sizes DATA_SIZES] [--mode MODE [MODE ...]]
                   [--output_dir OUTPUT_DIR]
                   [--heatmap_targets HEATMAP_TARGETS]
                   [--suggestions_budget SUGGESTIONS_BUDGET]
                   [--suggestions_langbudget SUGGESTIONS_LANGBUDGET]
                   [--suggestions_targets SUGGESTIONS_TARGETS]
                   [--suggestions_weights SUGGESTIONS_WEIGHTS]
                   [--suggestions_pivots SUGGESTIONS_PIVOTS]
                   [--suggestions_augmentable SUGGESTIONS_AUGMENTABLE]
                   [--suggestions_grid {exponential,linear}]
                   [--suggestions_objective {avg,min}]
                   [--suggestions_minperf SUGGESTIONS_MINPERF]
                   [--suggestions_minlangperf SUGGESTIONS_MINLANGPERF]
                   [--suggestions_verbose]
                   {mbert,xlmr}

positional arguments:
  {mbert,xlmr}          name of model to use

optional arguments:
  -h, --help            show this help message and exit
  --scores_file SCORES_FILE
                        path of json file containing scores to train on
  --train_format {json,csv}
                        Format of the training data
  --save_state SAVE_STATE
                        Save state of training of model to pickle file
  --load_state LOAD_STATE
                        Load trained model from pickle file
  --precomputed_features PRECOMPUTED_FEATURES
                        Path to precomputed-features file.
  --pivot_features {none,all,data_only}
                        What features based on pivot langs to use
  --use_all_langs       Add features based on all langs the tool supports
                        (Needed for transfer)
  --common_scaling      Common min max scaling params that are pvt
                        dependent(data size, type overlap, distance)
  --training_algorithm {xgboost,mlp}
                        which regressor to use
  --error_method {LOO,LOTO,split,kfold,manual_split}

  --data_sizes DATA_SIZES
                        Pivot data-size configs (semi-colon separated configs,
                        each config itself being comma-separated key-value
                        pairs)

  --mode MODE [MODE ...]
                        Output modes (comma-separated). Choose from following:
                        {heatmap, suggestions}.
  --output_dir OUTPUT_DIR
                        Overrride output directory
  --heatmap_targets HEATMAP_TARGETS
                        Targets for heatmap. Overrides suggestions_targets
                        (which is used by deafult)

  --suggestions_budget SUGGESTIONS_BUDGET
                        Budget for finding suggestions of which languages to
                        add data for (0 to disable)
  --suggestions_langbudget SUGGESTIONS_LANGBUDGET
                        Language-specific budget for finding suggestions
                        (overrrides suggestions_budget for these langs, comma-
                        separated list of key:value pairs)
  --suggestions_targets SUGGESTIONS_TARGETS
                        Targets being considered (comma-separated)
  --suggestions_weights SUGGESTIONS_WEIGHTS
                        Target weights for avg perf objective (comma-separated
                        list of key:value pairs, default wt=1)
  --suggestions_pivots SUGGESTIONS_PIVOTS
                        Index of desired row in data_sizes
  --suggestions_augmentable SUGGESTIONS_AUGMENTABLE
                        Set of augmentable languages (comma-separated)
  --suggestions_grid {exponential,linear}
                        Search space grid to use for suggestions
  --suggestions_objective {avg,min}
                        Objective function to be used for finding suggestions
  --suggestions_minperf SUGGESTIONS_MINPERF
                        Minimum acceptable average performance across tgts
  --suggestions_minlangperf SUGGESTIONS_MINLANGPERF
                        Minimum acceptable performance for given tgts (comma-
                        separated list of key:value pairs)
  --suggestions_verbose
                        Verbose logging of search

Examples

From shell

python3 litmus_mixing.py xlmr --scores_file training_observations.json --common_scaling --error_method split --mode heatmap --data_sizes "en:1000,hi:1000;en:1000,ar:1000" --use_all_langs --heatmap_targets en,fr,de,hi,ar,ru

From external scripts

from litmus import litmus_mixing

data_file = "" # Location of train data file
args = litmus_mixing.parse_args([
    "xlmr", data_file,
    "--common_scaling",
    "--error_method", "kfold",
    "--training_algorithm", "xgboost"
])
res = litmus_mixing.litmus_main(args)

WebApp

frontend/ contains the code for hosting the tool as a webapp using Azure Functions. frontend/WebUx implements the client-side as a static website which interacts with a Azure Functions backend which internally runs the litmus/litmus_mixing.py script.

Instructions to self-host

  1. Create an Azure Functions resource on Azure.
  2. Install Azure CLI and Functions Core Tools
  3. cd into the frontend/ directory and deploy to azure functions using func azure functionapp publish .

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
📝An easy-to-use package to restore punctuation of the text.

✏️ rpunct - Restore Punctuation This repo contains code for Punctuation restoration. This package is intended for direct use as a punctuation restorat

Daulet Nurmanbetov 72 Dec 30, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Jan 02, 2023
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe

Dat Quoc Nguyen 152 Sep 02, 2022
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

Bernhard Liebl 2 Jun 10, 2022
APEACH: Attacking Pejorative Expressions with Analysis on Crowd-generated Hate Speech Evaluation Datasets

APEACH - Korean Hate Speech Evaluation Datasets APEACH is the first crowd-generated Korean evaluation dataset for hate speech detection. Sentences of

Kevin-Yang 70 Dec 06, 2022
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
【原神】自动演奏风物之诗琴的程序

疯物之诗琴 读取midi并自动演奏原神风物之诗琴。 可以自定义配置文件自动调整音符来适配风物之诗琴。 (原神1.4直播那天就开始做了!到现在才能放出来。。) 如何使用 在Release页面中下载打包好的程序和midi压缩包并解压。 双击运行“疯物之诗琴.exe”。 在原神中打开风物之诗琴,软件内输入

435 Jan 04, 2023
TLA - Twitter Linguistic Analysis

TLA - Twitter Linguistic Analysis Tool for linguistic analysis of communities TLA is built using PyTorch, Transformers and several other State-of-the-

Tushar Sarkar 47 Aug 14, 2022
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data

Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Ye

Yi-Chang Chen 5 Dec 15, 2022
This repository serves as a place to document a toy attempt on how to create a generative text model in Catalan, based on GPT-2

GPT-2 Catalan playground and scripts to train a GPT-2 model either from scrath or from another pretrained model.

Laura 1 Jan 28, 2022