AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Overview

LITMUS Predictor

LITMUS Predictor provides support for simulating performance in ~100 languages given training observations of the desired task-model. Each training observation specifies the finetuning-datasize + test-performance in different languages.

Further, the tool provides support for constructing a data-collection strategy to maximize performance in desired targets subject to different constraints.

Installation

pip install -U pip
pip install -r requirements.txt

Usage

litmus/litmus_mixing.py contains the implementation of the LITMUS Predictor which can be trained on observations of different task-model trainings.

usage: LITMUS Tool [-h] [--scores_file SCORES_FILE]
                   [--train_format {json,csv}] [--save_state SAVE_STATE]
                   [--load_state LOAD_STATE]
                   [--precomputed_features PRECOMPUTED_FEATURES]
                   [--pivot_features {none,all,data_only}] [--use_all_langs]
                   [--common_scaling] [--training_algorithm {xgboost,mlp}]
                   [--error_method {LOO,LOTO,split,kfold,manual_split}]
                   [--data_sizes DATA_SIZES] [--mode MODE [MODE ...]]
                   [--output_dir OUTPUT_DIR]
                   [--heatmap_targets HEATMAP_TARGETS]
                   [--suggestions_budget SUGGESTIONS_BUDGET]
                   [--suggestions_langbudget SUGGESTIONS_LANGBUDGET]
                   [--suggestions_targets SUGGESTIONS_TARGETS]
                   [--suggestions_weights SUGGESTIONS_WEIGHTS]
                   [--suggestions_pivots SUGGESTIONS_PIVOTS]
                   [--suggestions_augmentable SUGGESTIONS_AUGMENTABLE]
                   [--suggestions_grid {exponential,linear}]
                   [--suggestions_objective {avg,min}]
                   [--suggestions_minperf SUGGESTIONS_MINPERF]
                   [--suggestions_minlangperf SUGGESTIONS_MINLANGPERF]
                   [--suggestions_verbose]
                   {mbert,xlmr}

positional arguments:
  {mbert,xlmr}          name of model to use

optional arguments:
  -h, --help            show this help message and exit
  --scores_file SCORES_FILE
                        path of json file containing scores to train on
  --train_format {json,csv}
                        Format of the training data
  --save_state SAVE_STATE
                        Save state of training of model to pickle file
  --load_state LOAD_STATE
                        Load trained model from pickle file
  --precomputed_features PRECOMPUTED_FEATURES
                        Path to precomputed-features file.
  --pivot_features {none,all,data_only}
                        What features based on pivot langs to use
  --use_all_langs       Add features based on all langs the tool supports
                        (Needed for transfer)
  --common_scaling      Common min max scaling params that are pvt
                        dependent(data size, type overlap, distance)
  --training_algorithm {xgboost,mlp}
                        which regressor to use
  --error_method {LOO,LOTO,split,kfold,manual_split}

  --data_sizes DATA_SIZES
                        Pivot data-size configs (semi-colon separated configs,
                        each config itself being comma-separated key-value
                        pairs)

  --mode MODE [MODE ...]
                        Output modes (comma-separated). Choose from following:
                        {heatmap, suggestions}.
  --output_dir OUTPUT_DIR
                        Overrride output directory
  --heatmap_targets HEATMAP_TARGETS
                        Targets for heatmap. Overrides suggestions_targets
                        (which is used by deafult)

  --suggestions_budget SUGGESTIONS_BUDGET
                        Budget for finding suggestions of which languages to
                        add data for (0 to disable)
  --suggestions_langbudget SUGGESTIONS_LANGBUDGET
                        Language-specific budget for finding suggestions
                        (overrrides suggestions_budget for these langs, comma-
                        separated list of key:value pairs)
  --suggestions_targets SUGGESTIONS_TARGETS
                        Targets being considered (comma-separated)
  --suggestions_weights SUGGESTIONS_WEIGHTS
                        Target weights for avg perf objective (comma-separated
                        list of key:value pairs, default wt=1)
  --suggestions_pivots SUGGESTIONS_PIVOTS
                        Index of desired row in data_sizes
  --suggestions_augmentable SUGGESTIONS_AUGMENTABLE
                        Set of augmentable languages (comma-separated)
  --suggestions_grid {exponential,linear}
                        Search space grid to use for suggestions
  --suggestions_objective {avg,min}
                        Objective function to be used for finding suggestions
  --suggestions_minperf SUGGESTIONS_MINPERF
                        Minimum acceptable average performance across tgts
  --suggestions_minlangperf SUGGESTIONS_MINLANGPERF
                        Minimum acceptable performance for given tgts (comma-
                        separated list of key:value pairs)
  --suggestions_verbose
                        Verbose logging of search

Examples

From shell

python3 litmus_mixing.py xlmr --scores_file training_observations.json --common_scaling --error_method split --mode heatmap --data_sizes "en:1000,hi:1000;en:1000,ar:1000" --use_all_langs --heatmap_targets en,fr,de,hi,ar,ru

From external scripts

from litmus import litmus_mixing

data_file = "" # Location of train data file
args = litmus_mixing.parse_args([
    "xlmr", data_file,
    "--common_scaling",
    "--error_method", "kfold",
    "--training_algorithm", "xgboost"
])
res = litmus_mixing.litmus_main(args)

WebApp

frontend/ contains the code for hosting the tool as a webapp using Azure Functions. frontend/WebUx implements the client-side as a static website which interacts with a Azure Functions backend which internally runs the litmus/litmus_mixing.py script.

Instructions to self-host

  1. Create an Azure Functions resource on Azure.
  2. Install Azure CLI and Functions Core Tools
  3. cd into the frontend/ directory and deploy to azure functions using func azure functionapp publish .

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Transformer related optimization, including BERT, GPT

This repository provides a script and recipe to run the highly optimized transformer-based encoder and decoder component, and it is tested and maintained by NVIDIA.

NVIDIA Corporation 1.7k Jan 04, 2023
Leon is an open-source personal assistant who can live on your server.

Leon Your open-source personal assistant. Website :: Documentation :: Roadmap :: Contributing :: Story 👋 Introduction Leon is an open-source personal

Leon AI 11.7k Dec 30, 2022
Let Xiao Ai speakers control third-party devices

A stupid way to extend miot/xiaoai. Demo for Panasonic Bath Bully FV-RB20VL1 逆向 Panasonic Smart China,获得控制浴霸的请求信息(HTTP 请求),详见 apps/panasonic.py; 2. 通过

bin 14 Jul 07, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Script to generate VAD dataset used in Asteroid recipe

About the dataset LibriVAD is an open source dataset for voice activity detection in noisy environments. It is derived from LibriSpeech signals (clean

11 Sep 15, 2022
Image2pcl - Enter the metaverse with 2D image to 3D projections

Image2PCL Enter the metaverse with 2D image to 3D projections! This is an implem

Benjamin Ho 0 Feb 05, 2022
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Kenneth Enevoldsen 124 Dec 29, 2022
Open-source offline translation library written in Python. Uses OpenNMT for translations

Open source neural machine translation in Python. Designed to be used either as a Python library or desktop application. Uses OpenNMT for translations and PyQt for GUI.

Argos Open Tech 1.6k Jan 01, 2023
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
Speech Recognition for Uyghur using Speech transformer

Speech Recognition for Uyghur using Speech transformer Training: this model using CTC loss and Cross Entropy loss for training. Download pretrained mo

Uyghur 11 Nov 17, 2022
Automated question generation and question answering from Turkish texts using text-to-text transformers

Turkish Question Generation Offical source code for "Automated question generation & question answering from Turkish texts using text-to-text transfor

Open Business Software Solutions 29 Dec 14, 2022
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Yixuan Su 26 Oct 17, 2022
Count the frequency of letters or words in a text file and show a graph.

Word Counter By EBUS Coding Club Count the frequency of letters or words in a text file and show a graph. Requirements Python 3.9 or higher matplotlib

EBUS Coding Club 0 Apr 09, 2022
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.

RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB

106 Nov 28, 2022
An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Vincent Herrmann 858 Dec 27, 2022
Train 🤗-transformers model with Poutyne.

poutyne-transformers Train 🤗 -transformers models with Poutyne. Installation pip install poutyne-transformers Example import torch from transformers

Lennart Keller 2 Dec 18, 2022