Repository for Project Insight: NLP as a Service

Overview

Project Insight

NLP as a Service

Project Insight

GitHub issues GitHub forks Github Stars GitHub license Code style: black

Contents

  1. Introduction
  2. Installation
  3. Project Details
  4. License

Introduction

Project Insight is designed to create NLP as a service with code base for both front end GUI (streamlit) and backend server (FastApi) the usage of transformers models on various downstream NLP task.

The downstream NLP tasks covered:

  • News Classification

  • Entity Recognition

  • Sentiment Analysis

  • Summarization

  • Information Extraction To Do

The user can select different models from the drop down to run the inference.

The users can also directly use the backend fastapi server to have a command line inference.

Features of the solution

  • Python Code Base: Built using Fastapi and Streamlit making the complete code base in Python.
  • Expandable: The backend is desinged in a way that it can be expanded with more Transformer based models and it will be available in the front end app automatically.
  • Micro-Services: The backend is designed with a microservices architecture, with dockerfile for each service and leveraging on Nginx as a reverse proxy to each independently running service.
    • This makes it easy to update, manitain, start, stop individual NLP services.

Installation

  • Clone the Repo.
  • Run the Docker Compose to spin up the Fastapi based backend service.
  • Run the Streamlit app with the streamlit run command.

Setup and Documentation

  1. Download the models

    • Download the models from here
    • Save them in the specific model folders inside the src_fastapi folder.
  2. Running the backend service.

    • Go to the src_fastapi folder
    • Run the Docker Compose comnand
    $ cd src_fastapi
    src_fastapi:~$ sudo docker-compose up -d
  3. Running the frontend app.

    • Go to the src_streamlit folder
    • Run the app with the streamlit run command
    $ cd src_streamlit
    src_streamlit:~$ streamlit run NLPfily.py
  4. Access to Fastapi Documentation: Since this is a microservice based design, every NLP task has its own seperate documentation

Project Details

Demonstration

Project Insight Demo

Directory Details

  • Front End: Front end code is in the src_streamlit folder. Along with the Dockerfile and requirements.txt

  • Back End: Back End code is in the src_fastapi folder.

    • This folder contains directory for each task: Classification, ner, summary...etc
    • Each NLP task has been implemented as a microservice, with its own fastapi server and requirements and Dockerfile so that they can be independently mantained and managed.
    • Each NLP task has its own folder and within each folder each trained model has 1 folder each. For example:
    - sentiment
        > app
            > api
                > distilbert
                    - model.bin
                    - network.py
                    - tokeniser files
                >roberta
                    - model.bin
                    - network.py
                    - tokeniser files
    
    • For each new model under each service a new folder will have to be added.

    • Each folder model will need the following files:

      • Model bin file.
      • Tokenizer files
      • network.py Defining the class of the model if customised model used.
    • config.json: This file contains the details of the models in the backend and the dataset they are trained on.

How to Add a new Model

  1. Fine Tune a transformer model for specific task. You can leverage the transformers-tutorials

  2. Save the model files, tokenizer files and also create a network.py script if using a customized training network.

  3. Create a directory within the NLP task with directory_name as the model name and save all the files in this directory.

  4. Update the config.json with the model details and dataset details.

  5. Update the <service>pro.py with the correct imports and conditions where the model is imported. For example for a new Bert model in Classification Task, do the following:

    • Create a new directory in classification/app/api/. Directory name bert.

    • Update config.json with following:

      "classification": {
      "model-1": {
          "name": "DistilBERT",
          "info": "This model is trained on News Aggregator Dataset from UC Irvin Machine Learning Repository. The news headlines are classified into 4 categories: **Business**, **Science and Technology**, **Entertainment**, **Health**. [New Dataset](https://archive.ics.uci.edu/ml/datasets/News+Aggregator)"
      },
      "model-2": {
          "name": "BERT",
          "info": "Model Info"
      }
      }
    • Update classificationpro.py with the following snippets:

      Only if customized class used

      from classification.bert import BertClass

      Section where the model is selected

      if model == "bert":
          self.model = BertClass()
          self.tokenizer = BertTokenizerFast.from_pretrained(self.path)

License

This project is licensed under the GPL-3.0 License - see the LICENSE.md file for details

Owner
Abhishek Kumar Mishra
Eat, Sleep, Pray, and Code * An Operations Innovation Lead at IHS Markit during working hours. * Love to read manga and cook new cuisines.
Abhishek Kumar Mishra
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
Simple and efficient RevNet-Library with DeepSpeed support

RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory

Lucas Nestler 112 Dec 05, 2022
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084

Plan de Tecnologías del Lenguaje - Gobierno de España 203 Dec 20, 2022
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
Yet Another Sequence Encoder - Encode sequences to vector of vector in python !

Yase Yet Another Sequence Encoder - encode sequences to vector of vectors in python ! Why Yase ? Yase enable you to encode any sequence which can be r

Pierre PACI 12 Aug 19, 2021
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Yixuan Su 26 Oct 17, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
189 Jan 02, 2023
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
This is a GUI program that will generate a word search puzzle image

Word Search Puzzle Generator Table of Contents About The Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing Cont

11 Feb 22, 2022
Knowledge Oriented Programming Language

KoPL: 面向知识的推理问答编程语言 安装 | 快速开始 | 文档 KoPL全称 Knowledge oriented Programing Language, 是一个为复杂推理问答而设计的编程语言。我们可以将自然语言问题表示为由基本函数组合而成的KoPL程序,程序运行的结果就是问题的答案。目前,

THU-KEG 62 Dec 12, 2022