Harvis is designed to automate your C2 Infrastructure.

Related tags

Text Data & NLPHarvis
Overview

Harvis

Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2.

📌 What is it?

Harvis is a python tool to help you create multiple hauls for a specific operation during a red team engagement. It can automatically create your C2 machine, redirector machine, setup SSL, .htaccess configuration, firewall rules and more. Harvis also has the purpose of automating the job of the operator of identifying burned domains/redirectors that may be caught during the operation. After identifying the burned domains it provides the possibility of rotating the infrastructure, setting up different redirectors and atributing a different domain.

📌 How?

🔨 Harvis uses the Digital Ocean API to automate creation and deletion of droplets.

🔨 The Namecheap API is used to set DNS records to redirectors.

🔨 The API Void is used to constantly verify the state of the redirectors and check if anything is blacklisted.

Features

Harvis has several features to help you organize your available domains and redirector/C2 machines.

  • Namecheap Interaction - Harvis enables you to buy domains directly through the command line, as long as you have credits in your account.
  • Multiple Hauls - It is possible to create as many hauls as possible, each one having specific configurations.
  • Multiple C2 Profiles by Haul - Harvis allows you to create multiple C2 profiles by hauls: you could two HTTP listeners in one of the C2's and 3 in the other one, each of them listening on different ports.
  • Multiple Redirector Configuration - Each redirector can have a different .htaccess configuration, defined by the operator.
  • Customizable Firewall Rules - Harvis comes with default firewall rules for the redirectors and C2's, however, this feature is easily customizable.
  • Priority System - Each haul has a queue system, in a way that the new redirector will replace the blacklisted one with the domains in the queue.
  • Priority System - Automatically replace your droplets: Harvis identifies any blacklisted redirector and print the results to the operator. It allows the operator to create a temporary droplet to replace the blacklisted one. It does not configure the migration of any active agents, since the way the agent will be migrated/spawned to connect to the new domain might be a very personal decision in an engagement. After creating the temporary droplet, it allows you to migrate any active agents and kill the older redirector.
  • Priority System - If somehow the script crashes, all the information will be saved in the backup.py file. Restarting the script will recover all your infrastructure as it was.

Installation

git clone https://github.com/thiagomayllart/Harvis/
cd Harvis
pip3 install -r requirements

Running

python3 harvis.py

Configuring API Keys

Harvis can only be used with the proper API Keys from Digital Ocean, Namecheap, APIVoid.

These api keys should be added to the config.py file in the respective lines. Don't forget to setup your namecheap username in namecheap_username variable:

digital_ocean_token = ""
...
namecheap_key = ""
...
apivoid_key = ""
...
namecheap_username = ""
...

For more information regarding these API Keys, visit:

https://app.apivoid.com/ https://ap.www.namecheap.com/ https://cloud.digitalocean.com/

First Run

Before running the script, you should apply some modifications to the config file, which describes the configuration of your infrastructure:

  1. Modify the "names" variable.

This variable holds the names of each haul you want your infrastructure you have. Theses names should be applied in the next variables. You can have as many hauls you want. You can also specify which domain should already be configure to each haul. If you don't specify the domains, you will be asked to move domains to each haul in the first run. If you don't have any available domains in your namecheap API, you can buy it directly though Harvis. It is also possible to have more than one domain in each haul: the first one will be used in the redirector and the others will already be in the backup list for further infrastructure rotations. Example:

names = {"short":[],"long":[],"exploitation":[],"testing":[]}
names = {"short":["domain1.com"],"long":["domain2.com","domain3.com"],"exploitation":["domain4.com"],"testing":["domain5.com"]}
  1. Modify the "config_htaccess_dic" variable:

You can customize your htaccess rules for each haul in this variable. This variable is dictionary, so remember to add an htacces for each haul you added previously in the "names" variable like:

config_htaccess_dic = \
    {"short":"""
RewriteEngine On
RewriteCond %{REQUEST_URI} ^/({1})/?$ [NC]
RewriteRule ^.*$ https://{2}%{REQUEST_URI} [P]
RewriteRule ^.*$ http://{3}? [L,R=302]
""","long:"""
RewriteEngine On
RewriteCond %{REQUEST_URI} ^/({1})/?$ [NC]
RewriteRule ^.*$ https://{2}%{REQUEST_URI} [P]
RewriteRule ^.*$ http://{3}? [L,R=302]
""","exploitation":"""
RewriteEngine On
RewriteCond %{REQUEST_URI} ^/({1})/?$ [NC]
RewriteRule ^.*$ https://{2}%{REQUEST_URI} [P]
RewriteRule ^.*$ http://{3}? [L,R=302]
""","testing":"""
RewriteEngine On
RewriteCond %{REQUEST_URI} ^/({1})/?$ [NC]
RewriteRule ^.*$ https://{2}%{REQUEST_URI} [P]
RewriteRule ^.*$ http://{3}? [L,R=302]
"""
                       }

You can notice the presence of the fields: {1}, {2}, {3}. If you customize this variable, do not remove them. {1} are the parameters your Mythic agent will use to communicate to the C2 (it also allows customization). {2} is the IP address of your C2. {3} is the location the redirector will be redirecting (it also allows customization).

  1. Modify the "agent_profiles" variable:

This variable describes the HTTP parameters that your agent will use to communicate to your C2. Mythic allows setting these parameters during the creation of the agent, so, these values should match the ones you will be configurating the agent. The first one is the GET parameter and other one is the POST parameter. Also, remeber to once again add a configuration to each haul you created previously:

agent_profiles = {"short":{"URI":"data|index"},"long":{"URI":"q|id"}... ...
  1. Modify "domain_front_redirector" variable:

This variable holds the domain your redirectors will be redirecting anyone that tries to access. Add a configuration to each haul you created previously:

domain_front_redirector = {"short":"www.example.com","long":"www.example2.com"... ... ...

  1. Modify "c2_profiles" variable:

With the "c2_profiles" variable you can create different listener profiles for each Haul you created. The format is exactly the same as the JSON you may find when accessing Configuring a C2 Profile in Mythic. You can also have other profiles than HTTP, however, depending on the protocol used, it may be necessary to change firewall rules in the C2 or the redirector (further explained).

Example:


c2_profiles = {"short":[{"name":"HTTP","config":"""{
  "instances": [
  {
    "ServerHeaders": {
      "Server": "NetDNA-cache/2.2",
      "Cache-Control": "max-age=0, no-cache",
      "Pragma": "no-cache",
      "Connection": "keep-alive",
      "Content-Type": "application/javascript; charset=utf-8"
    },
    "port": 443,
    "key_path": "privkey.pem",
    "cert_path": "cert.pem",
    "debug": true
    }
  ]
}"""}],"long":[{"name":"HTTP","config":"""{
  "instances": [
  {
    "ServerHeaders": {
      "Server": "NetDNA-cache/2.2",
      "Cache-Control": "max-age=0, no-cache",
      "Pragma": "no-cache",
      "Connection": "keep-alive",
      "Content-Type": "application/javascript; charset=utf-8"
    },
    "port": 443,
    "key_path": "privkey.pem",
    "cert_path": "cert.pem",
    "debug": true
    }
  ]
}"""}] }
  1. Modify the "check_infra_state" variable:

This variable holds the value (in seconds) that will be used as the interval between each verification of blacklisted domains by APIVoid.

  1. Modify "ip_allowed_to_connect_c2":

Replace it with the IP you will be using as the proxy to connect to your Mythic C2 panel. You can use your public IP, but it is not recommended.

  1. Replace "username":

Replace it with the username you will be using during the engagement. This variable is used to tag each droplet created in digital ocean, making the distinction between the droplets of each operator easier. It also avoids that the tool erases the droplet of another user (in case you guys are using the same API Keys).

  1. Modify Firewall Rules (OPTIONAL):

If you want to modify the firewall rules for the C2/redirector, you will find them respectively at:

C2: C2_setup.py: function firewall_rules Redirector: redirect_setup.py: firewall_rules

Important

Harvis whitelists the IP of the machine you are deploying it as being able to access your Mythic C2 panel. It is highly recommended to use a VPC to deploy Harvis.

Owner
Thiago Mayllart
- Information Security Researcher / RedTeam
Thiago Mayllart
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
⚖️ A Statutory Article Retrieval Dataset in French.

A Statutory Article Retrieval Dataset in French This repository contains the Belgian Statutory Article Retrieval Dataset (BSARD), as well as the code

Maastricht Law & Tech Lab 19 Nov 17, 2022
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.

Improving Transformer Models by Reordering their Sublayers This repository contains the code for running the character-level Sandwich Transformers fro

Ofir Press 53 Sep 26, 2022
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab

HUSEIN ZOLKEPLI 1.7k Dec 30, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 27, 2022
Speech to text streamlit app

Speech to text Streamlit-app! 👄 This speech to text recognition is powered by t

Charly Wargnier 9 Jan 01, 2023
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
基于“Seq2Seq+前缀树”的知识图谱问答

KgCLUE-bert4keras 基于“Seq2Seq+前缀树”的知识图谱问答 简介 博客:https://kexue.fm/archives/8802 环境 软件:bert4keras=0.10.8 硬件:目前的结果是用一张Titan RTX(24G)跑出来的。 运行 第一次运行的时候,会给知

苏剑林(Jianlin Su) 65 Dec 12, 2022
Ukrainian TTS (text-to-speech) using Coqui TTS

title emoji colorFrom colorTo sdk app_file pinned Ukrainian TTS 🐸 green green gradio app.py false Ukrainian TTS 📢 🤖 Ukrainian TTS (text-to-speech)

Yurii Paniv 85 Dec 26, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022
BookNLP, a natural language processing pipeline for books

BookNLP BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including: Part-of-speech taggin

654 Jan 02, 2023
A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.

WordDumb A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. Languages X-Ray supp

172 Dec 29, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021