Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

Overview

New State-of-the-Art in Preposition Sense Disambiguation

Supervisor:

Institutions:

Project Description

The disambiguation of words is a central part of NLP tasks. In particular, there is the ambiguity of prepositions, which has been a problem in NLP for over a decade and still is. For example the preposition 'in' can have a temporal (e.g. in 2021) or a spatial (e.g. in Frankuft) meaning. A strong motivation behind the learning of these meanings are current research attempts to transfer text to artifical scenes. A good understanding of the real meaning of prepositions is crucial in order for the machine to create matching scenes.

With the birth of the transformer models in 2017 [1], attention based models have been pushing boundries in many NLP disciplines. In particular, bert, a transformer model by google and pre-trained on more than 3,000 M words, obtained state-of-the-art results on many NLP tasks and Corpus.

The goal of this project is to use modern transformer models to tackle the problem of preposition sense disambiguation. Therefore, we trained a simple bert model on the SemEval 2007 dataset [2], a central benchmark dataset for this task. To the best of our knowledge, the best purposed model for disambiguating the meanings of prepositions on the SemEval achives an accuracy of up to 88% [3]. Neither more recent approaches surpass this frontier[4][5] . Our model achives an accuracy of 90.84%, out-performing the current state-of-the-art.

How to train

To meet our goals, we cleand the SemEval 2007 dataset to only contain the needed information. We have added it to the repository and can be found in ./data/training-data.tsv.

Train a bert model:
First, install the requirements.txt. Afterwards, you can train the bert-model by:

python3 trainer.py --batch-size 16 --learning-rate 1e-4 --epochs 4 --data-path "./data/training_data.tsv"

The chosen hyper-parameters in the above example are tuned and already set by default. After training, this will save the weights and config to a new folder ./model_save/. Feel free to omit this training-step and use our trained weights directly.

Examples

We attach an example tagger, which can be used in an interactive manner. python3 -i tagger.py

Sourrond the preposition, for which you like to know the meaning of, with <head>...</head> and feed it to the tagger:

>>> tagger.tag("I am <head>in</head> big trouble")
Predicted Meaning: Indicating a state/condition/form, often a mental/emotional one that is being experienced 

>>> tagger.tag("I am speaking <head>in</head> portuguese.")
Predicted Meaning: Indicating the language, medium, or means of encoding (e.g., spoke in German)

>>> tagger.tag("He is swimming <head>with</head> his hands.")
Predicted Meaning: Indicating the means or material used to perform an action or acting as the complement of similar participle adjectives (e.g., crammed with, coated with, covered with)

>>> tagger.tag("She blinked <head>with</head> confusion.")
Predicted Meaning: Because of / due to (the physical/mental presence of) (e.g., boiling with anger, shining with dew)

References

[1] Vaswani, Ashish et al. (2017). Attention is all you need. Advances in neural information processing systems. P. 5998--6008.

[2] Litkowski, Kenneth C and Hargraves, Orin (2007). SemEval-2007 Task 06: Word-sense disambiguation of prepositions. Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007). P. 24--29

[3] Litkowski, Ken. (2013). Preposition disambiguation: Still a problem. CL Research, Damascus, MD.

[4] Gonen, Hila and Goldberg, Yoav. (2016). Semi supervised preposition-sense disambiguation using multilingual data. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. P. 2718--2729

[5] Gong, Hongyu and Mu, Jiaqi and Bhat, Suma and Viswanath, Pramod (2018). Preposition Sense Disambiguation and Representation. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. P. 1510--1521

Owner
Dirk Neuhäuser
Dirk Neuhäuser
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
HAIS_2GNN: 3D Visual Grounding with Graph and Attention

HAIS_2GNN: 3D Visual Grounding with Graph and Attention This repository is for the HAIS_2GNN research project. Tao Gu, Yue Chen Introduction The motiv

Yue Chen 1 Nov 26, 2022
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022
Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation

Diego 1 Mar 20, 2022
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
Türkçe küfürlü içerikleri bulan bir yapay zeka kütüphanesi / An ML library for profanity detection in Turkish sentences

"Kötü söz sahibine aittir." -Anonim Nedir? sinkaf uygunsuz yorumların bulunmasını sağlayan bir python kütüphanesidir. Farkı nedir? Diğer algoritmalard

KaraGoz 4 Feb 18, 2022
LSTM model - IMDB review sentiment analysis

NLP - Movie review sentiment analysis The colab notebook contains the code for building a LSTM Recurrent Neural Network that gives 87-88% accuracy on

Sundeep Bhimireddy 1 Jan 29, 2022
This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.

Twitter COVID-19 Sentiment Analysis Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold Pro

4 Oct 15, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics.

Simple tool/toolkit for evaluating NLG (Natural Language Generation) offering various automated metrics. Jury offers a smooth and easy-to-use interface. It uses datasets for underlying metric computa

Open Business Software Solutions 129 Jan 06, 2023
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Udit Arora 19 Oct 28, 2022
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
2021语言与智能技术竞赛:机器阅读理解任务

LICS2021 MRC 1. 项目&任务介绍 本项目基于官方给定的baseline(DuReader-Checklist-BASELINE)进行二次改造,对整个代码框架做了简单的重构,对核心网络结构添加了注释,解耦了数据读取的模块,并添加了阈值确认的功能,一些小的细节也做了改进。 本次任务为202

roar 29 Dec 05, 2022
Plugin repository for Macast

Macast-plugins Plugin repository for Macast. How to use third-party player plugin Download Macast from GitHub Release. Download the plugin you want fr

109 Jan 04, 2023
Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

UlionTse 907 Dec 27, 2022
2021海华AI挑战赛·中文阅读理解·技术组·第三名

文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。

21 Dec 26, 2022
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 03, 2023
Super easy library for BERT based NLP models

Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor

Utterworks 1.8k Dec 27, 2022