Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

Overview

New State-of-the-Art in Preposition Sense Disambiguation

Supervisor:

Institutions:

Project Description

The disambiguation of words is a central part of NLP tasks. In particular, there is the ambiguity of prepositions, which has been a problem in NLP for over a decade and still is. For example the preposition 'in' can have a temporal (e.g. in 2021) or a spatial (e.g. in Frankuft) meaning. A strong motivation behind the learning of these meanings are current research attempts to transfer text to artifical scenes. A good understanding of the real meaning of prepositions is crucial in order for the machine to create matching scenes.

With the birth of the transformer models in 2017 [1], attention based models have been pushing boundries in many NLP disciplines. In particular, bert, a transformer model by google and pre-trained on more than 3,000 M words, obtained state-of-the-art results on many NLP tasks and Corpus.

The goal of this project is to use modern transformer models to tackle the problem of preposition sense disambiguation. Therefore, we trained a simple bert model on the SemEval 2007 dataset [2], a central benchmark dataset for this task. To the best of our knowledge, the best purposed model for disambiguating the meanings of prepositions on the SemEval achives an accuracy of up to 88% [3]. Neither more recent approaches surpass this frontier[4][5] . Our model achives an accuracy of 90.84%, out-performing the current state-of-the-art.

How to train

To meet our goals, we cleand the SemEval 2007 dataset to only contain the needed information. We have added it to the repository and can be found in ./data/training-data.tsv.

Train a bert model:
First, install the requirements.txt. Afterwards, you can train the bert-model by:

python3 trainer.py --batch-size 16 --learning-rate 1e-4 --epochs 4 --data-path "./data/training_data.tsv"

The chosen hyper-parameters in the above example are tuned and already set by default. After training, this will save the weights and config to a new folder ./model_save/. Feel free to omit this training-step and use our trained weights directly.

Examples

We attach an example tagger, which can be used in an interactive manner. python3 -i tagger.py

Sourrond the preposition, for which you like to know the meaning of, with <head>...</head> and feed it to the tagger:

>>> tagger.tag("I am <head>in</head> big trouble")
Predicted Meaning: Indicating a state/condition/form, often a mental/emotional one that is being experienced 

>>> tagger.tag("I am speaking <head>in</head> portuguese.")
Predicted Meaning: Indicating the language, medium, or means of encoding (e.g., spoke in German)

>>> tagger.tag("He is swimming <head>with</head> his hands.")
Predicted Meaning: Indicating the means or material used to perform an action or acting as the complement of similar participle adjectives (e.g., crammed with, coated with, covered with)

>>> tagger.tag("She blinked <head>with</head> confusion.")
Predicted Meaning: Because of / due to (the physical/mental presence of) (e.g., boiling with anger, shining with dew)

References

[1] Vaswani, Ashish et al. (2017). Attention is all you need. Advances in neural information processing systems. P. 5998--6008.

[2] Litkowski, Kenneth C and Hargraves, Orin (2007). SemEval-2007 Task 06: Word-sense disambiguation of prepositions. Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007). P. 24--29

[3] Litkowski, Ken. (2013). Preposition disambiguation: Still a problem. CL Research, Damascus, MD.

[4] Gonen, Hila and Goldberg, Yoav. (2016). Semi supervised preposition-sense disambiguation using multilingual data. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. P. 2718--2729

[5] Gong, Hongyu and Mu, Jiaqi and Bhat, Suma and Viswanath, Pramod (2018). Preposition Sense Disambiguation and Representation. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. P. 1510--1521

Owner
Dirk Neuhäuser
Dirk Neuhäuser
AI_Assistant - This is a Python based Voice Assistant.

This is a Python based Voice Assistant. This was programmed to increase my understanding of python and also how the in-general Voice Assistants work.

1 Jan 06, 2022
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
Python package for Turkish Language.

PyTurkce Python package for Turkish Language. Documentation: https://pyturkce.readthedocs.io. Installation pip install pyturkce Usage from pyturkce im

Mert Cobanov 14 Oct 09, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
NLPShala , the best IDE for all Natural language processing tasks.

The revolutionary IDE for all NLP (Natural language processing) stuffs on the internet.

Abhi 3 Aug 08, 2021
Wrapper to display a script output or a text file content on the desktop in sway or other wlroots-based compositors

nwg-wrapper This program is a part of the nwg-shell project. This program is a GTK3-based wrapper to display a script output, or a text file content o

Piotr Miller 94 Dec 27, 2022
Source code for the paper "TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations"

TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations Created by Jiahao Pang, Duanshun Li, and Dong Tian from InterDigital In

InterDigital 21 Dec 29, 2022
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to

Ori Ram 88 Dec 31, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

14 Jan 03, 2023
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022