LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

Overview

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

Tasks | Datasets | LongLM | Baselines | Paper

Introduction

LOT is a benchmark for evaluating Chinese long text modeling. LOT consists of two understanding tasks and two generation tasks. We construct new datasets for these tasks based on human-written Chinese stories.

Furthermore, we release an encoder-decoder-based Chinese long text pretraining model named LongLM with up to 1 billion parameters. We pretrain LongLM on 120G Chinese novels with two generative tasks including text infilling and conditional continuation. Extensive experiments show that LongLM outperforms similar-sized pretraining models substantially on both the understanding and generation tasks in LOT.

Tasks

We design LOT as an aggregation of two understanding tasks including Cloze Test (ClozeT) and Sentence Position Prediction (SenPos), and two generation tasks including Plot Completion (PlotCom) and Outline-conditioned Generation (OutGen). We show the task descriptions in the table below.

Datasets

We show the data statistics in the table below. The abbreviation sent/len is short for sentence/length, respectively. The datasets and evaluation scripts can be downloaded from THUCloud.

LongLM

1. Parameters

  • $d_m$: the dimension of hidden states
  • $d_{ff}$: the dimension of feed forward layers
  • $d_{kv}$: the dimension of the keys/values in the self-attention layers
  • $n_h$: the number of attention heads
  • $n_e$: the number of hidden layers of the encoder
  • $n_d$: the number of hidden layers of the decoder
  • #P: the number of parameters

2. Pretraining Tasks

3. Pretraining Data

We collect 120G novels as the pretraining data for LongLM. The pretraining data will be publicly available soon.

4. Checkpoints

  1. Download: The checkpoints and example data can be downloaded from THUCloud. The training and generation scripts are under the directory longlm. You can also use the official script provided by Transformers to fine-tune the model.

  2. Model Loading:

    from transformers import T5Tokenizer, T5ForConditionalGeneration
    tokenizer = T5Tokenizer.from_pretrained('LongLM-large')
    model = T5ForConditionalGeneration.from_pretrained('LongLM-large')
    
    • Dependencies: torch=1.8.1, transformers=4.6.1
  3. Training:

    Execute bash ./finetune.sh to fine-tune LongLM. If deepspeed is available, you can execute bash ./finetune_deepspped.sh to accelerate.

    env CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 CUDA_LAUNCH_BLOCKING=1 python3 -m torch.distributed.launch --nproc_per_node=8 \
    finetune_trainer.py \
    --data_dir=./data \ # directory of data
    --train_name=train \ # file prefix of the training data
    --output_dir=./save_model \ # output directory to save the checkpoint
    --save_total_limit=10 \ # maximum number of the saved checkpoints
    --per_gpu_train_batch_size=3 \ # batch size for training
    --per_gpu_eval_batch_size=3 \ # batch size for evaluation
    --num_train_epochs=1 \ # number of training epochs
    --logging_steps=5 \ # number of stps to log the loss value
    --model_name_or_path=./LongLM-small \ # path to the pretrained model
    --warmup_steps=100 \ # number of steps for warmup
    --learning_rate=1e-4 \ # learning rate
    --n_val=100 \ # number of examples for validation
    --do_train --do_eval \ # whether to training/validation
    --evaluation_strategy steps \ # strategy of evaluation
    --gradient_accumulation_steps=40 # number of steps for gradient accumulation
    --overwrite_output_dir \
    --load_best_model_at_end
  4. Generation:

    ",return_tensors="pt", padding=True, truncation=True, max_length=512).input_ids.to(device) gen = model.generate(input_ids, do_sample=True, decoder_start_token_id=1, top_p=0.9, max_length=512) ">
    input_ids = tokenizer("小咕噜对,
         
          "
         ,return_tensors="pt", padding=True, truncation=True, max_length=512).input_ids.to(device)
    
    gen = model.generate(input_ids, do_sample=True, decoder_start_token_id=1, top_p=0.9, max_length=512)

Baselines

1. Understanding Tasks

The example data, training and evaluation scripts of LongLM are under the directory ./baselines/understanding. You can execute bash ./finetune.sh to fine-tune LongLM and execute bash ./eval.sh to evaluate the fine-tuned model.

2. Generation Tasks

The training script of LongLM for the generation tasks is the same as pretraining script. The generation script and example data can be found under ./baseline/generation. You can execute bash ./gen.sh for generation.

Citation

@misc{guan2021lot,
      title={LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation}, 
      author={Jian Guan and Zhuoer Feng and Yamei Chen and Ruilin He and Xiaoxi Mao and Changjie Fan and Minlie Huang},
      year={2021},
      eprint={2108.12960},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Conversational AI groups from Tsinghua University
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.

RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB

106 Nov 28, 2022
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann

Fan Bai 8 Dec 17, 2021
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 03, 2023
Generating new names based on trends in data using GPT2 (Transformer network)

MLOpsNameGenerator Overall Goal The goal of the project is to develop a model that is capable of creating Pokémon names based on its description, usin

Gustav Lang Moesmand 2 Jan 10, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

ESPnet 5.9k Jan 03, 2023
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
Natural Language Processing for Adverse Drug Reaction (ADR) Detection

Natural Language Processing for Adverse Drug Reaction (ADR) Detection This repo contains code from a project to identify ADRs in discharge summaries a

Medicines Optimisation Service - Austin Health 21 Aug 05, 2022
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023
Phrase-Based & Neural Unsupervised Machine Translation

Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas

Facebook Research 1.5k Dec 28, 2022
Chinese Named Entity Recognization (BiLSTM with PyTorch)

BiLSTM-CRF for Name Entity Recognition PyTorch version A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition. 使用 PyTorch 实现

5 Jun 01, 2022
Retraining OpenAI's GPT-2 on Discord Chats

Train OpenAI's GPT-2 on Discord Chats Retraining a Text Generation Model on Discord Chats using gpt-2-simple that wraps existing model fine-tuning and

Ayush Mishra 4 Oct 27, 2022
中文医疗信息处理基准CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

English | 中文说明 CBLUE AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For fur

452 Dec 30, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 05, 2023
GVT is a generic translation tool for parts of text on the PC screen with Text to Speak functionality.

GVT is a generic translation tool for parts of text on the PC screen with Text to Speech functionality. I wanted to create it because the existing tools that I experimented with did not satisfy me in

Nuked 1 Aug 21, 2022