L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

Overview

L3Cube-MahaCorpus

L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual corpus with 24.8M sentences and 289M tokens. We also present, MahaBERT, MahaAlBERT, and MahaRoBerta all BERT-based masked language models, and MahaFT, the fast text word embeddings both trained on full Marathi corpus with 752M tokens. The evaluation details are mentioned in our paper link

Dataset Statistics

L3Cube-MahaCorpus(full) = L3Cube-MahaCorpus(news) + L3Cube-MahaCorpus(non-news)

Full Marathi Corpus incorporates all existing sources .

Dataset #tokens(M) #sentences(M) Link
L3Cube-MahaCorpus(news) 212 17.6 link
L3Cube-MahaCorpus(non-news) 76.4 7.2 link
L3Cube-MahaCorpus(full) 289 24.8 link
Full Marathi Corpus(all sources) 752 57.2 link

Marathi BERT models and Marathi Fast Text model

The full Marathi Corpus is used to train BERT language models and made available on HuggingFace model hub.

Model Description Link
MahaBERT Base-BERT link
MahaRoBERTa RoBERTa link
MahaAlBERT AlBERT link
MahaFT Fast Text bin vec

L3CubeMahaSent

L3CubeMahaSent is the largest publicly available Marathi Sentiment Analysis dataset to date. This dataset is made of marathi tweets which are manually labelled. The annotation guidelines are mentioned in our paper link .

Dataset Statistics

This dataset contains a total of 18,378 tweets which are classified into three classes - Positive(1), Negative(-1) and Neutral(0). All tweets are present in their original form, without any preprocessing.

Out of these, 15,864 tweets are considered for splitting them into train(tweets-train.csv), test(tweets-test.csv) and validation(tweets-valid.csv) datasets. This has been done to avoid class imbalance in our dataset.
The remaining 2,514 tweets are also provided in a separate sheet(tweets-extra.csv).

The statistics of the dataset are as follows :

Split Total tweets Tweets per class
Train 12114 4038
Test 2250 750
Validation 1500 500

The extra sheet contains 2355 positive and 159 negative tweets. These tweets have not been considered during baseline experiments.

Baseline Experimentations

Two-class(positive,negative) and Three-class(positive,negative,neutral) sentiment analysis / classification was performed on the dataset.

Models

Some of the models used or performing baseline experiments were:

  • CNN, BiLSTM

    • fastText embeddings provided by IndicNLP and Facebook are also used along with the above two models. These embeddings are used in two variations: static and trainable.
  • BERT based models:

    • Multilingual BERT
    • IndicBERT

Results

Details of the best performing models are given in the following table:

Model 3-class 2-class
CNN IndicFT trainable 83.24 93.13
BiLSTM IndicFT trainable 82.89 91.80
IndicBERT 84.13 92.93

The fine-tuned IndicBERT model is available on huggingface here . Further details about the dataset and baseline experiments can be found in this paper pdf .

License

L3Cube-MahaCorpus and L3CubeMahaSent is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citing

@article{joshi2022l3cube,
  title={L3Cube-MahaCorpus and MahaBERT: Marathi Monolingual Corpus, Marathi BERT Language Models, and Resources},
  author={Joshi, Raviraj},
  journal={arXiv preprint arXiv:2202.01159},
  year={2022}
}
@inproceedings{kulkarni2021l3cubemahasent,
  title={L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset},
  author={Kulkarni, Atharva and Mandhane, Meet and Likhitkar, Manali and Kshirsagar, Gayatri and Joshi, Raviraj},
  booktitle={Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis},
  pages={213--220},
  year={2021}
}
@inproceedings{kulkarni2022experimental,
  title={Experimental evaluation of deep learning models for marathi text classification},
  author={Kulkarni, Atharva and Mandhane, Meet and Likhitkar, Manali and Kshirsagar, Gayatri and Jagdale, Jayashree and Joshi, Raviraj},
  booktitle={Proceedings of the 2nd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications},
  pages={605--613},
  year={2022},
  organization={Springer}
}
A Practitioner's Guide to Natural Language Processing

Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, Text

Dipanjan (DJ) Sarkar 1.5k Jan 03, 2023
A sample project that exists for PyPUG's "Tutorial on Packaging and Distributing Projects"

A sample Python project A sample project that exists as an aid to the Python Packaging User Guide's Tutorial on Packaging and Distributing Projects. T

Python Packaging Authority 4.5k Dec 30, 2022
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021
Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

2 Dec 29, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 07, 2023
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Microsoft 1.1k Dec 17, 2022
Fine-tune GPT-3 with a Google Chat conversation history

Google Chat GPT-3 This repo will help you fine-tune GPT-3 with a Google Chat conversation history. The trained model will be able to converse as one o

Nate Baer 7 Dec 10, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

317 Dec 23, 2022
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022