Chinese NER with albert/electra or other bert descendable model (keras)

Overview

Chinese NLP (albert/electra with Keras)

Named Entity Recognization

Project Structure

./
├── NER
│   ├── __init__.py
│   ├── log                                     训练nohup日志
│   │   ├── albert.out
│   │   ├── albert_crf.out
│   │   ├── electra.out
│   │   ├── electra_crf.out
│   │   ├── electra_regulization.out
│   │   └── electra_tiny.out
│   └── train.py
├── README.md
├── albert_base_google_zh                       albert_base权重
│   ├── albert_config.json
│   ├── albert_model.ckpt.data-00000-of-00001
│   ├── albert_model.ckpt.index
│   ├── checkpoint
│   └── vocab.txt
├── albert_tiny_google_zh                       albert_tiny权重
│   ├── albert_config.json
│   ├── albert_model.ckpt.data-00000-of-00001
│   ├── albert_model.ckpt.index
│   ├── checkpoint
│   └── vocab.txt
├── chinese_electra_small_ex_L-24_H-256_A-4     electra_small权重
│   ├── electra_small_ex.data-00000-of-00001
│   ├── electra_small_ex.index
│   ├── electra_small_ex.meta
│   ├── small_ex_discriminator_config.json
│   ├── small_ex_generator_config.json
│   └── vocab.txt
├── data                                        数据集
│   ├── pulmonary.test
│   ├── pulmonary.train
│   └── sict_train.txt
├── electra_180g_base                           electra_base权重
│   ├── base_discriminator_config.json
│   ├── base_generator_config.json
│   ├── electra_180g_base.ckpt.data-00000-of-00001
│   ├── electra_180g_base.ckpt.index
│   ├── electra_180g_base.ckpt.meta
│   └── vocab.txt
├── environment.yaml                            conda环境配置文件
├── main.py
├── path.py                                     所有路径
├── requirements.txt
├── utils                                       bert4keras包(也可pip下)
│   ├── __init__.py
│   ├── backend.py
│   ├── layers.py
│   ├── models.py
│   ├── optimizers.py
│   ├── snippets.py
│   └── tokenizers.py
└── weights                                     权重文件
    ├── pulmonary_albert_ner.h5
    ├── pulmonary_electra_ner.h5
    └── pulmonary_electra_tiny_ner_crf.h5

9 directories, 48 files

Dataset

三甲医院肺结节数据集,20000+字,BIO格式,形如:

中	B-ORG
共	I-ORG
中	I-ORG
央	I-ORG
致	O
中	B-ORG
国	I-ORG
致	I-ORG
公	I-ORG
党	I-ORG
十	I-ORG
一	I-ORG
大	I-ORG
的	O
贺	O
词	O

ATTENTION: 在处理自己数据集的时候需要注意:

  • 字与标签之间用空格("\ ")隔开
  • 其中句子与句子之间使用空行隔开

Steps

  1. 替换数据集
  2. 修改NER/train.py中的maxlen(超过截断,少于填充,最好设置训练集、测试集中最长句子作为MAX_SEQ_LEN)
  3. 下载权重,放到项目中
  4. 修改path.py中的地址
  5. 根据需要修改NER/train.py模型结构
  6. 训练前debug看下train_generator数据
  7. 训练

Model

albert

electra

Train

运行NER/train.py

Evaluate

train时给出的F1即为实体级别的F1

albert最佳F1

Epoch 61/300
13/13 [==============================] - 16s 1s/step - loss: 0.1343 - sparse_accuracy: 0.9713
test:  f1: 0.82428, precision: 0.81775, recall: 0.83092

electra

Epoch 29/300
13/13 [==============================] - 16s 1s/step - loss: 0.3487 - sparse_accuracy: 0.9146
test:  f1: 0.83189, precision: 0.81579, recall: 0.84863
PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI

data2vec-pytorch PyTorch implementation of "data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language" from Meta AI (F

Aryan Shekarlaban 105 Jan 04, 2023
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Justin Terry 32 Nov 09, 2021
LCG T-TEST USING EUCLIDEAN METHOD

This project has been created for statistical usage, purposing for determining ATL takers and nontakers using LCG ttest and Euclidean Method, especially for internal business case in Telkomsel.

2 Jan 21, 2022
【原神】自动演奏风物之诗琴的程序

疯物之诗琴 读取midi并自动演奏原神风物之诗琴。 可以自定义配置文件自动调整音符来适配风物之诗琴。 (原神1.4直播那天就开始做了!到现在才能放出来。。) 如何使用 在Release页面中下载打包好的程序和midi压缩包并解压。 双击运行“疯物之诗琴.exe”。 在原神中打开风物之诗琴,软件内输入

435 Jan 04, 2023
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Yixuan Su 26 Oct 17, 2022
Code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

This repository contains the code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

Chenhe Dong 28 Nov 10, 2022
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022
Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library.

GI-Pi Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library. The SP0

Nick Bild 8 Dec 15, 2021
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
API for the GPT-J language model 🦜. Including a FastAPI backend and a streamlit frontend

gpt-j-api 🦜 An API to interact with the GPT-J language model. You can use and test the model in two different ways: Streamlit web app at http://api.v

Víctor Gallego 276 Dec 31, 2022
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
基于pytorch+bert的中文事件抽取

pytorch_bert_event_extraction 基于pytorch+bert的中文事件抽取,主要思想是QA(问答)。 要预先下载好chinese-roberta-wwm-ext模型,并在运行时指定模型的位置。

西西嘛呦 31 Nov 30, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 31, 2022