Espial is an engine for automated organization and discovery of personal knowledge

Overview

logo

Live Demo (currently not running, on it)

Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run with any knowledge base software, but currently works best with file-based knowledge bases.

Espial uses Natural Language Processing and AI to improve the way you find new links in your knowledge, enhancing the organization of your thoughts to help you discover new ones.

From the explanatory blog post:

Espial can cultivate a form of intended serendipity by suggesting a link between your thoughts instead of simply reminding you of a pathway you had already created. It aims to make discovery and the act of connection —fundamental to the way we think— more efficient.

It can help you surface domains, ideas, and directions to brainstorm and explore, related to your current note-taking activity

See Architecture for a more technical overview of Espial's algorithm.

demo gif

Espial's current features:

  • automated graph: Espial generates a graph of auto-detected concepts and maps how they link to your different documents. This maps both the meaning of your documents into a visual space and allows you to see how those documents relate to each other with a high-level view.
  • document similarity: you can query for a given document in your knowledge base and get most related and relevant notes that you could link / relate to it, and through which concepts. This similarity is on a semantic level (on meaning), not on the words used.
  • external search: Espial has a semantic search engine and I’ve built a web extension that uses it to find items related to the page you’re currently on. You can run submit search queries and webpages to compare them to your knowledge base.
  • transformation of exploration into concrete structure: when you view the tags and concepts that the program has surfaced, you can pick those you want to become part of your knowledge base’s structure. They can then become tags or even concept notes (a note that describes a concept and links to related notes).
  • extensive customizability: Espial can be easily plugged into many different knowledge base software, although it was first built for Archivy. Writing plugins and extensions for other tools is simple.

Future Goals / In Progress Features:

Espial is a nascent project and will be getting many improvements, including:

  • commands to compare and integrate two entire knowledge bases
  • an option to download all the articles referenced in the knowledge base as documents
  • enhance the algorithm so that it learns and detects existing hierarchies in your knowledge
  • coordinate launch of Espial plugins for major knowledge base software
  • improve load time for large KBs

If there are things you want added to Espial, create an issue!

Installation

  • have pip and Python installed
  • Run pip install espial
  • Run python -m spacy download en_core_web_md

Usage

Usage: espial run [OPTIONS] DATA_DIR

Options:
  --rerun         Regenerate existing concept graph
  --port INTEGER  Port to run server on.
  --host TEXT     Host to run server on.
  --help          Show this message and exit.
  • run espial run and then open http://localhost:5002 to access the interface. Warning: if you're running Espial on a low-ram device, lower batch_size in the config (see below).

Configuration

Espial's configuration language is Python. See espial/config.py to see what you can configure. Run espial config to set up your configuration.

If you like the software, consider sponsoring me. I'm a student and the support is really useful. If you use it in your own projects, please credit the original library.

If you have ideas for the project and how to make it better, please open an issue or contact me.

Comments
  • Numpy issue on MacOS 11.2

    Numpy issue on MacOS 11.2

    Running the second python command results in the following error. I was not able to resolve it by myself by downgrading numpy to 1.20.0:

    ~/w/g/espial ❯❯❯ python -m spacy download en_core_web_md                                                                   
    
    Traceback (most recent call last):
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/runpy.py", line 188, in _run_module_as_main
        mod_name, mod_spec, code = _get_module_details(mod_name, _Error)
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/runpy.py", line 147, in _get_module_details
        return _get_module_details(pkg_main_name, error)
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/runpy.py", line 111, in _get_module_details
        __import__(pkg_name)
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/site-packages/spacy/__init__.py", line 11, in <module>
        from thinc.api import prefer_gpu, require_gpu, require_cpu  # noqa: F401
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/site-packages/thinc/api.py", line 2, in <module>
        from .initializers import normal_init, uniform_init, glorot_uniform_init, zero_init
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/site-packages/thinc/initializers.py", line 4, in <module>
        from .backends import Ops
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/site-packages/thinc/backends/__init__.py", line 8, in <module>
        from .cupy_ops import CupyOps, has_cupy
      File "/Users/dmitry/.pyenv/versions/3.9.4/lib/python3.9/site-packages/thinc/backends/cupy_ops.py", line 19, in <module>
        from .numpy_ops import NumpyOps
      File "thinc/backends/numpy_ops.pyx", line 1, in init thinc.backends.numpy_ops
    ValueError: numpy.ndarray size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject
    
    ~/w/g/espial ❯❯❯ python -V      
    Python 3.9.4
    
    opened by dmitrym0 5
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    Beep boop. Your images are optimized!

    Your image file size has been reduced by 12% 🎉

    Details

    | File | Before | After | Percent reduction | |:--|:--|:--|:--| | /espial/static/logo.png | 5.46kb | 2.74kb | 49.78% | | /espial/static/Group 2.png | 1.57kb | 1.06kb | 32.15% | | /img/espial.gif | 7,685.72kb | 6,797.04kb | 11.56% | | /espial/static/logo.svg | 0.86kb | 0.85kb | 1.58% | | | | | | | Total : | 7,693.61kb | 6,801.69kb | 11.59% |


    📝 docs | :octocat: repo | 🙋🏾 issues | 🏪 marketplace

    ~Imgbot - Part of Optimole family

    opened by imgbot[bot] 0
  • Need an Effective Document Display

    Need an Effective Document Display

    We should be able to click on a node and see the document in an in-browser render. We should also highlight specific words or content that links to other things. Like a document with a ton of clickable highlighted areas. It would also help to have a synopsis of the document, its links, and the key concepts and their links.

    opened by mmangione 0
  • Filtering of Nodes by Feature or Connection

    Filtering of Nodes by Feature or Connection

    We need to be able to filter out some of the nodes. This means we should have a search box or toolbar that can search, sort, and filter by word, concept, type of connection, type of word, etc...

    I think this might be similar to a faceted ElasticSearch filter.

    opened by mmangione 0
  • Can't download en_core_web_lg with latest version of spaCy (3.3.0.dev0)

    Can't download en_core_web_lg with latest version of spaCy (3.3.0.dev0)

    With the current version of spaCy (3.3.0.dev0), downloading en_core_web_md did not work:

    $ python3 -m spacy download en_core_web_md
    
    ✘ No compatible packages found for v3.3 of spaCy
    

    It worked after downgrading to 3.2.0

    opened by didmar 0
Releases(v0.2.1)
  • v0.2.1(Mar 9, 2022)

    Espial just got an update! This is mostly maintenance and crucial bug fixing, although more exciting stuff should be coming to Espial core soon. This release comes with the launch of archivy-espial, an Espial integration for Archivy, allowing you to automatically find related notes and documents for your current note, directly inside your knowledge base.

    Highlights

    • addition of a get_potential_concepts route to determine the tags that could suit a given query
    • addition of a ALLOWED_ORIGINS config parameter to set the websites that can fetch info from Espial
    • fixed bug when a query returns no results
    • fixed implementation bug when files are moved / renamed and
    Source code(tar.gz)
    Source code(zip)
Owner
Uzay-G
Active developer building stuff with Ruby, Crystal and Python | Google Code-in 2019 Grand Prize Winner | Creator @archivy
Uzay-G
A retro text-to-speech bot for Discord

hawking A retro text-to-speech bot for Discord, designed to work with all of the stuff you might've seen in Moonbase Alpha, using the existing command

Nick Schorr 23 Dec 25, 2022
Codes for processing meeting summarization datasets AMI and ICSI.

Meeting Summarization Dataset Meeting plays an essential part in our daily life, which allows us to share information and collaborate with others. Wit

xcfeng 39 Dec 14, 2022
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
[ICCV 2021] Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 86 Dec 28, 2022
Toward a Visual Concept Vocabulary for GAN Latent Space, ICCV 2021

Toward a Visual Concept Vocabulary for GAN Latent Space Code and data from the ICCV 2021 paper Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Kl

Sarah Schwettmann 13 Dec 23, 2022
A simple tool to update bib entries with their official information (e.g., DBLP or the ACL anthology).

Rebiber: A tool for normalizing bibtex with official info. We often cite papers using their arXiv versions without noting that they are already PUBLIS

(Bill) Yuchen Lin 2k Jan 01, 2023
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
Maix Speech AI lib, including ASR, chat, TTS etc.

Maix-Speech 中文 | English Brief Now only support Chinese, See 中文 Build Clone code by: git clone https://github.com/sipeed/Maix-Speech Compile x86x64 c

Sipeed 267 Dec 25, 2022
This is an incredibly powerful calculator that is capable of many useful day-to-day functions.

Description 💻 This is an incredibly powerful calculator that is capable of many useful day-to-day functions. Such functions include solving basic ari

Jordan Leich 37 Nov 19, 2022
An implementation of the Pay Attention when Required transformer

Pay Attention when Required (PAR) Transformer-XL An implementation of the Pay Attention when Required transformer from the paper: https://arxiv.org/pd

7 Aug 11, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 829 Jan 07, 2023
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2.

Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2. It is trained (finetuned) on a curated list of approximately 45K Python (~470MB) files gathered from the

Galois Autocompleter 91 Sep 23, 2022
ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Fortalice Solutions, LLC 78 Dec 12, 2022
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables

Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in

1 Jan 29, 2022
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretra

Mozilla 6.5k Jan 08, 2023