Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

Overview

PEGASUS library

Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised objective Gap Sentences Generation (GSG) to train a transformer encoder-decoder model. The paper can be found on arXiv. ICML 2020 accepted.

If you use this code or these models, please cite the following paper:

@misc{zhang2019pegasus,
    title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization},
    author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu},
    year={2019},
    eprint={1912.08777},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

Results update

We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table.

dataset C4 HugeNews Mixed & Stochastic
xsum 45.20/22.06/36.99 47.21/24.56/39.25 47.60/24.83/39.64
cnn_dailymail 43.90/21.20/40.76 44.17/21.47/41.11 44.16/21.56/41.30
newsroom 45.07/33.39/41.28 45.15/33.51/41.33 45.98/34.20/42.18
multi_news 46.74/17.95/24.26 47.52/18.72/24.91 47.65/18.75/24.95
gigaword 38.75/19.96/36.14 39.12/19.86/36.24 39.65/20.47/36.76
wikihow 43.07/19.70/34.79 41.35/18.51/33.42 46.39/22.12/38.41 *
reddit_tifu 26.54/8.94/21.64 26.63/9.01/21.60 27.99/9.81/22.94
big_patent 53.63/33.16/42.25 53.41/32.89/42.07 52.29/33.08/41.66 *
arxiv 44.70/17.27/25.80 44.67/17.18/25.73 44.21/16.95/25.67
pubmed 45.49/19.90/27.69 45.09/19.56/27.42 45.97/20.15/28.25
aeslc 37.69/21.85/36.84 37.40/21.22/36.45 37.68/21.25/36.51
billsum 57.20/39.56/45.80 57.31/40.19/45.82 59.67/41.58/47.59

The "Mixed & Stochastic" model has the following changes:

  • trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples).
  • trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity).
  • the model uniformly sample a gap sentence ratio between 15% and 45%.
  • importance sentences are sampled using a 20% uniform noise to importance scores.
  • the sentencepiece tokenizer is updated to be able to encode newline character.

(*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data:

  • wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information.
  • we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS.

Setup

create an instance on google cloud with GPU (optional)

Please create a project first and create an instance

gcloud compute instances create \
  ${VM_NAME} \
  --zone=${ZONE} \
  --machine-type=n1-highmem-8 \
  --accelerator type=nvidia-tesla-v100,count=1 \
  --boot-disk-size=500GB \
  --image-project=ml-images \
  --image-family=tf-1-15 \
  --maintenance-policy TERMINATE --restart-on-failure

install library and dependencies

Clone library on github and install requirements.

git clone https://github.com/google-research/pegasus
cd pegasus
export PYTHONPATH=.
pip3 install -r requirements.txt

Download vocab, pretrained and fine-tuned checkpoints of all experiments from Google Cloud.

Alternatively in terminal, follow the instruction and install gsutil. Then

mkdir ckpt
gsutil cp -r gs://pegasus_ckpt/ ckpt/

Finetuning on downstream datasets

on existing dataset

Finetune on an existing dataset aeslc.

python3 pegasus/bin/train.py --params=aeslc_transformer \
--param_overrides=vocab_filename=ckpt/pegasus_ckpt/c4.unigram.newline.10pct.96000.model \
--train_init_checkpoint=ckpt/pegasus_ckpt/model.ckpt-1500000 \
--model_dir=ckpt/pegasus_ckpt/aeslc

If you would like to finetune on a subset of dataset, please refer to the example of input pattern.

Evaluate on the finetuned dataset.

python3 pegasus/bin/evaluate.py --params=aeslc_transformer \
--param_overrides=vocab_filename=ckpt/pegasus_ckpt/c4.unigram.newline.10pct.96000.model,batch_size=1,beam_size=5,beam_alpha=0.6 \
--model_dir=ckpt/pegasus_ckpt/aeslc

Note that the above example is using a single GPU so the batch_size is much smaller than the results reported in the paper.

add new finetuning dataset

Two types of dataset format are supported: TensorFlow Datasets (TFDS) or TFRecords.

This tutorial shows how to add a new dataset in TFDS. (The fine-tuning dataset is expected to be supervised, please provide supervised_keys in dataset info).

Tfrecords format requires each record to be a tf example of {"inputs":tf.string, "targets":tf.string}.

For example, if you registered a TFDS dataset called new_tfds_dataset for training and evaluation, and have some files in tfrecord format called new_dataset_files.tfrecord* for test, they can be registered in /pegasus/params/public_params.py.

@registry.register("new_params")
def my_param(param_overrides):
  return public_params.transformer_params(
      {
          "train_pattern": "tfds:new_tfds_dataset,train",
          "dev_pattern": "tfds:new_tfds_dataset,validation",
          "test_pattern": "tfrecord:new_dataset_files.tfrecord*",
          "max_input_len": 512,
          "max_output_len": 128,
          "train_steps": 10000,
          "learning_rate": 0.0001,
          "batch_size": 8,
      }, param_overrides)

Evaluation metrics.

Evaluation results can be found in mode_dir. Summarization metrics are automatically calculated for each evaluation point.

  • ROUGE is the main metric for summarization quality.

  • BLEU is an alternative quality metric for language generation.

  • Extractive Fragments Coverage & Density are metrics that measures the abstractiveness of the summary.

  • Repetition Rates measures generation repetition failure modes.

  • Length statistics measures the length distribution of decodes comparing to gold summary.

Several types of output files can be found in model_dir

  • text_metrics-*.txt: above metrics in text format. Each row contains metric name, 95% lower bound value, mean value, 95% upper bound value.
  • inputs-.txt, targets-.txt, predictions-*.txt: raw text files of model inputs/outputs.

Pre-training

Pretraining (on C4 or any other corpus) requires a customly built tensorflow that includes ops for on-the-fly parsing that processes raw text document into model inputs and targets ids. Please refer to pegasus/ops/pretrain_parsing_ops.cc and pegasus/data/parsers.py for details.

Acknowledgements

Contains parts of code and design for training and evaluation of summarization models originally by Ben Goodrich [email protected].

Owner
Google Research
Google Research
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

JHJu 2 Jan 18, 2022
AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

Md. Rakibul Islam 1 Jan 18, 2022
Curso práctico: NLP de cero a cien 🤗

Curso Práctico: NLP de cero a cien Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utili

Somos NLP 147 Jan 06, 2023
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023
Contains descriptions and code of the mini-projects developed in various programming languages

TexttoSpeechAndLanguageTranslator-project introduction A pleasant application where the client will be given buttons like play,reset and exit. The cli

Adarsh Reddy 1 Dec 22, 2021
A Persian Image Captioning model based on Vision Encoder Decoder Models of the transformers🤗.

Persian-Image-Captioning We fine-tuning the Vision Encoder Decoder Model for the task of image captioning on the coco-flickr-farsi dataset. The implem

Hamtech-ai 15 Aug 25, 2022
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
NLP Overview

NLP-Overview Introduction The field of NPL encompasses a variety of topics which involve the computational processing and understanding of human langu

PeterPham 1 Jan 13, 2022
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Repository for the paper "Optimal Subarchitecture Extraction for BERT"

Bort Companion code for the paper "Optimal Subarchitecture Extraction for BERT." Bort is an optimal subset of architectural parameters for the BERT ar

Alexa 461 Nov 21, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
Python utility library for compositing PDF documents with reportlab.

pdfdoc-py Python utility library for compositing PDF documents with reportlab. Installation The pdfdoc-py package can be installed directly from the s

Michael Gale 1 Jan 06, 2022
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 03, 2023
This project consists of data analysis and data visualization (done using python)of all IPL seasons from 2008 to 2019 and answering the most asked questions about the IPL.

IPL-data-analysis This project consists of data analysis and data visualization of all IPL seasons from 2008 to 2019 and answering the most asked ques

Sivateja A T 2 Feb 08, 2022
PyTranslator é simultaneamente um editor e tradutor de texto com diversos recursos e interface feito com coração e 100% em Python

PyTranslator O Que é e para que serve o PyTranslator? PyTranslator é simultaneamente um editor e tradutor de texto em com interface gráfica que usa a

Elizeu Barbosa Abreu 1 May 12, 2022
Script to generate VAD dataset used in Asteroid recipe

About the dataset LibriVAD is an open source dataset for voice activity detection in noisy environments. It is derived from LibriSpeech signals (clean

11 Sep 15, 2022