STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

Overview

STonKGs

Tests PyPI PyPI - Python Version PyPI - License Documentation Status DOI Code style: black

STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combines structured information from KGs with unstructured text data to learn joint representations. While we demonstrated STonKGs on a biomedical knowledge graph ( i.e., from INDRA), the model can be applied other domains. In the following sections we describe the scripts that are necessary to be run to train the model on any given dataset.

💪 Getting Started

Data Format

Since STonKGs is operating on both text and KG data, it's expected that the respective data files include columns for both modalities. More specifically, the expected data format is a pandas dataframe (or a pickled pandas dataframe for the pre-training script), in which each row is containing one text-triple pair. The following columns are expected:

  • source: Source node in the triple of a given text-triple pair
  • target: Target node in the triple of a given text-triple pair
  • evidence: Text of a given text-triple pair
  • (optional) class: Class label for a given text-triple pair in fine-tuning tasks (does not apply to the pre-training procedure)

Note that both source and target nodes are required to be in the Biological Expression Langauge (BEL) format, more specifically, they need to be contained in the INDRA KG. For more details on the BEL format, see for example the INDRA documentation for BEL processor and PyBEL.

Pre-training STonKGs

Once you have installed STonKGs as a Python package (see below), you can start training the STonKGs on your dataset by running:

$ python3 -m stonkgs.models.stonkgs_pretraining

The configuration of the model can be easily modified by altering the parameters of the pretrain_stonkgs method. The only required argument to be changed is PRETRAINING_PREPROCESSED_POSITIVE_DF_PATH, which should point to your dataset.

Downloading the pre-trained STonKGs model on the INDRA KG

We released the pre-trained STonKGs models on the INDRA KG for possible future adaptations, such as further pre-training on other KGs. Both STonKGs150k as well as STonKGs300k are accessible through Hugging Face's model hub.

The easiest way to download and initialize the pre-trained STonKGs model is to use the from_default_pretrained() class method (with STonKGs150k being the default):

from stonkgs import STonKGsForPreTraining

# Download the model from the model hub and initialize it for pre-training 
# using from_default_pretrained
stonkgs_pretraining = STonKGsForPreTraining.from_default_pretrained()

Alternatively, since our code is based on Hugging Face's transformers package, the pre-trained model can be easily downloaded and initialized using the .from_pretrained() function:

from stonkgs import STonKGsForPreTraining

# Download the model from the model hub and initialize it for pre-training 
# using from_pretrained
stonkgs_pretraining = STonKGsForPreTraining.from_pretrained(
    'stonkgs/stonkgs-150k',
)

Extracting Embeddings

The learned embeddings of the pre-trained STonKGs models (or your own STonKGs variants) can be extracted in two simple steps. First, a given dataset with text-triple pairs (a pandas DataFrame, see Data Format) needs to be preprocessed using the preprocess_file_for_embeddings function. Then, one can obtain the learned embeddings using the preprocessed data and the get_stonkgs_embeddings function:

import pandas as pd

from stonkgs import get_stonkgs_embeddings, preprocess_df_for_embeddings

# Generate some example data
# Note that the evidence sentences are typically longer than in this example data
rows = [
    [
        "p(HGNC:1748 ! CDH1)",
        "p(HGNC:2515 ! CTNND1)",
        "Some example sentence about CDH1 and CTNND1.",
    ],
    [
        "p(HGNC:6871 ! MAPK1)",
        "p(HGNC:6018 ! IL6)",
        "Another example about some interaction between MAPK and IL6.",
    ],
    [
        "p(HGNC:3229 ! EGF)",
        "p(HGNC:4066 ! GAB1)",
        "One last example in which Gab1 and EGF are mentioned.",
    ],
]
example_df = pd.DataFrame(rows, columns=["source", "target", "evidence"])

# 1. Preprocess the text-triple data for embedding extraction
preprocessed_df_for_embeddings = preprocess_df_for_embeddings(example_df)

# 2. Extract the embeddings 
embedding_df = get_stonkgs_embeddings(preprocessed_df_for_embeddings)

Fine-tuning STonKGs

The most straightforward way of fine-tuning STonKGs on the original six classfication tasks is to run the fine-tuning script (note that this script assumes that you have a mlflow logger specified, e.g. using the --logging_dir argument):

$ python3 -m stonkgs.models.stonkgs_finetuning

Moreover, using STonKGs for your own fine-tuning tasks (i.e., sequence classification tasks) in your own code is just as easy as initializing the pre-trained model:

from stonkgs import STonKGsForSequenceClassification

# Download the model from the model hub and initialize it for fine-tuning
stonkgs_model_finetuning = STonKGsForSequenceClassification.from_default_pretrained(
    num_labels=number_of_labels_in_your_task,
)

# Initialize a Trainer based on the training dataset
trainer = Trainer(
    model=model,
    args=some_previously_defined_training_args,
    train_dataset=some_previously_defined_finetuning_data,
)

# Fine-tune the model to the moon 
trainer.train()

Using STonKGs for Inference

You can generate new predictions for previously unseen text-triple pairs (as long as the nodes are contained in the INDRA KG) based on either 1) the fine-tuned models used for the benchmark or 2) your own fine-tuned models. In order to do that, you first need to load/initialize the fine-tuned model:

from stonkgs.api import get_species_model, infer

model = get_species_model()

# Next, you want to use that model on your dataframe (consisting of at least source, target
# and evidence columns, see **Data Format**) to generate the class probabilities for each
# text-triple pair belonging to each of the specified classes in the respective fine-tuning task:
example_data = ...

# See Extracting Embeddings for the initialization of the example data
# This returns both the raw (transformers) PredictionOutput as well as the class probabilities 
# for each text-triple pair
raw_results, probabilities = infer(model, example_data)

ProtSTonKGs

It is possible to download the extension of STonKGs, the pre-trained ProtSTonKGs model, and initialize it for further pre-training on text, KG and amino acid sequence data:

from stonkgs import ProtSTonKGsForPreTraining

# Download the model from the model hub and initialize it for pre-training 
# using from_pretrained
protstonkgs_pretraining = ProtSTonKGsForPreTraining.from_pretrained(
    'stonkgs/protstonkgs',
)

Moreover, analogous to STonKGs, ProtSTonKGs can be used for fine-tuning sequence classification tasks as well:

from stonkgs import ProtSTonKGsForSequenceClassification

# Download the model from the model hub and initialize it for fine-tuning
protstonkgs_model_finetuning = ProtSTonKGsForSequenceClassification.from_default_pretrained(
    num_labels=number_of_labels_in_your_task,
)

# Initialize a Trainer based on the training dataset
trainer = Trainer(
    model=model,
    args=some_previously_defined_training_args,
    train_dataset=some_previously_defined_finetuning_data,
)

# Fine-tune the model to the moon 
trainer.train()

⬇️ Installation

The most recent release can be installed from PyPI with:

$ pip install stonkgs

The most recent code and data can be installed directly from GitHub with:

$ pip install git+https://github.com/stonkgs/stonkgs.git

To install in development mode, use the following:

$ git clone git+https://github.com/stonkgs/stonkgs.git
$ cd stonkgs
$ pip install -e .

Warning: Because stellargraph doesn't currently work on Python 3.9, this software can only be installed on Python 3.8.

Artifacts

The pre-trained models are hosted on HuggingFace The fine-tuned models are hosted on the STonKGs community page on Zenodo along with the other artifacts (node2vec embeddings, random walks, etc.)

Acknowledgements

⚖️ License

The code in this package is licensed under the MIT License.

📖 Citation

Balabin H., Hoyt C.T., Birkenbihl C., Gyori B.M., Bachman J.A., Komdaullil A.T., Plöger P.G., Hofmann-Apitius M., Domingo-Fernández D. STonKGs: A Sophisticated Transformer Trained on Biomedical Text and Knowledge Graphs (2021), bioRxiv, 2021.08.17.456616v1.

🎁 Support

This project has been supported by several organizations (in alphabetical order):

💰 Funding

This project has been funded by the following grants:

Funding Body Program Grant
DARPA Automating Scientific Knowledge Extraction (ASKE) HR00111990009

🍪 Cookiecutter

This package was created with @audreyfeldroy's cookiecutter package using @cthoyt's cookiecutter-snekpack template.

🛠️ Development

The final section of the README is for if you want to get involved by making a code contribution.

Testing

After cloning the repository and installing tox with pip install tox, the unit tests in the tests/ folder can be run reproducibly with:

$ tox

Additionally, these tests are automatically re-run with each commit in a GitHub Action.

📦 Making a Release

After installing the package in development mode and installing tox with pip install tox, the commands for making a new release are contained within the finish environment in tox.ini. Run the following from the shell:

$ tox -e finish

This script does the following:

  1. Uses BumpVersion to switch the version number in the setup.cfg and src/stonkgs/version.py to not have the -dev suffix
  2. Packages the code in both a tar archive and a wheel
  3. Uploads to PyPI using twine. Be sure to have a .pypirc file configured to avoid the need for manual input at this step
  4. Push to GitHub. You'll need to make a release going with the commit where the version was bumped.
  5. Bump the version to the next patch. If you made big changes and want to bump the version by minor, you can use tox -e bumpversion minor after.
Comments
  • Add default loading function

    Add default loading function

    This PR uses the top-level __init__.py to make imports a bit less verbose and adds a class method that wraps loading from huggingface's hub so users don't need so many constants

    opened by cthoyt 3
  • Add code for using fine-tuned models

    Add code for using fine-tuned models

    • [x] Upload fine-tuned models to Zenodo under CC 0 license each in their own record (@cthoyt)
      • [x] species (https://zenodo.org/record/5205530)
      • [x] location (https://zenodo.org/record/5205553)
      • [x] disease (https://zenodo.org/record/5205592)
      • [x] correct (multiclass; https://zenodo.org/record/5206139)
      • [x] correct (binary; https://zenodo.org/record/5205989)
      • [x] cell line (https://zenodo.org/record/5205915)
    • [x] Automate download of fine-tuned models with PyStow (@cthoyt; see example in 660920d, done in 5dfecde)
    • [x] Show how to load model into python object (@helena-balabin)
    • [x] Show how to make a prediction on a given text triple, similarly to the README example that's on the general pre-trained model (@helena-balabin)
    opened by cthoyt 2
  • Prepare code for black

    Prepare code for black

    black is an automatic code formatter and linter. After all of the flake8 hell, it's a solution we can use to automate most of the pain away. This PR prepares the project for applying black by updating the flake8 config (adding a specific ignore) and adding a tox environment for applying black itself.

    After accepting this PR, do two things in order:

    1. Uncomment the flake8-black plugin in the flake8 environment of the tox.ini
    2. Run tox -e lint
    opened by cthoyt 1
  • Stream, yo

    Stream, yo

    I got a sigkill from lack of memory when I did this on the full COVID19 emmaa model, so I'm switching everything over to iterables and streams rather than building up full pandas dataframes each time.

    opened by cthoyt 0
  • Improve label to identifier mapping

    Improve label to identifier mapping

    Make sure that during inference, the predictions are correctly mapped to any kind of class labels when saving the dataframe. (This requires accessing/saving the id2tag attribute in each of the fine-tuning model classes.)

    opened by helena-balabin 0
Releases(v0.1.5)
Owner
STonKGs
Multimodal Transformers for biomedical text and Knowledge Graph data
STonKGs
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
A simple chatbot based on chatterbot that you can use for anything has basic features

Chatbotium A simple chatbot based on chatterbot that you can use for anything has basic features. I have some errors Read the paragraph below: Known b

Herman 1 Feb 16, 2022
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
Creating an LSTM model to generate music

Music-Generation Creating an LSTM model to generate music music-generator Used to create basic sin wave sounds music-ai Contains the functions to conv

Jerin Joseph 2 Dec 02, 2021
NLP: SLU tagging

NLP: SLU tagging

北海若 3 Jan 14, 2022
An end to end ASR Transformer model training repo

END TO END ASR TRANSFORMER 本项目基于transformer 6*encoder+6*decoder的基本结构构造的端到端的语音识别系统 Model Instructions 1.数据准备: 自行下载数据,遵循文件结构如下: ├── data │ ├── train │

旷视天元 MegEngine 10 Jul 19, 2022
Repository for the paper: VoiceMe: Personalized voice generation in TTS

🗣 VoiceMe: Personalized voice generation in TTS Abstract Novel text-to-speech systems can generate entirely new voices that were not seen during trai

Pol van Rijn 80 Dec 29, 2022
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
Automatically search Stack Overflow for the command you want to run

stackshell Automatically search Stack Overflow (and other Stack Exchange sites) for the command you want to ru Use the up and down arrows to change be

circuit10 22 Oct 27, 2021
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
🌐 Translation microservice powered by AI

Dot Translate 🌐 A microservice for quick and local translation using A.I. This service starts a local webserver used for neural machine translation.

Dot HQ 48 Nov 22, 2022