Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Related tags

Text Data & NLPUDEG
Overview

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Official Code Repository for the paper "Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation" ([email protected] 2021): https://aclanthology.org/2021.sdp-1.2/

Abstract

One of the challenges in information retrieval (IR) is the vocabulary mismatch problem, which happens when the terms between queries and documents are lexically different but semantically similar. While recent work has proposed to expand the queries or documents by enriching their representations with additional relevant terms to address this challenge, they usually require a large volume of query-document pairs to train an expansion model. In this paper, we propose an Unsupervised Document Expansion with Generation (UDEG) framework with a pre-trained language model, which generates diverse supplementary sentences for the original document without using labels on query-document pairs for training. For generating sentences, we further stochastically perturb their embeddings to generate more diverse sentences for document expansion. We validate our framework on two standard IR benchmark datasets. The results show that our framework significantly outperforms relevant expansion baselines for IR.

Dependencies

  • Python 3.7.9
  • Pytorch 1.7.0
  • Transformers 4.3

Run

1. Installing anserini

We use the open-source information retrieval toolkit anserini.

# install maven
sudo apt-get install maven

# cloning / installing anserini
git clone https://github.com/castorini/anserini.git --recurse-submodules
cd anserini/
# changing jacoco from 0.8.2 to 0.8.3 in pom.xml to build correctly
mvn clean package appassembler:assemble

# compile evaluation tools and other scripts
cd tools/eval && tar xvfz trec_eval.9.0.4.tar.gz && cd trec_eval.9.0.4 && make && cd ../../..
cd tools/eval/ndeval && make && cd ../../..

2. Data Preprocessing

python 0_0_extract_text.py
python 0_1_convert_qrels_to_binary.py
python 0_2_convert_qrels_to_ndcg_scale.py

3. Data Tokenization

python 1_convert_text_to_tokenized.py

4. Abstractive Generation with Stochastic Text Generation

python 2_abstract_summary_multi.py

We provide the abstractly & stochastically generated output file in this repository (test_pegasus_xsum_4mc.tar.gz).

5. Convert to json format

We refer to the repository of https://github.com/nyu-dl/dl4ir-doc2query.

python 3_concat_collection_summary_to_json.py

6. Indexing, Retrieval, Evaluation

We refer to the repository of https://github.com/boudinfl/ir-using-kg#data.

sh 4_create_indexes.sh
sh 5_retrieve.sh
sh 6_evaluate.sh

Cite

@inproceedings{jeong-etal-2021-unsupervised,
    title = "Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation",
    author = "Jeong, Soyeong  and
      Baek, Jinheon  and
      Park, ChaeHun  and
      Park, Jong",
    booktitle = "Proceedings of the Second Workshop on Scholarly Document Processing",
    month = jun,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.sdp-1.2",
    doi = "10.18653/v1/2021.sdp-1.2",
    pages = "7--17"
}
Owner
NLP*CL Laboratory
NLP*CL Laboratory
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

John Snow Labs 3k Jan 05, 2023
Proquabet - Convert your prose into proquints and then you essentially have Vogon poetry

Proquabet Turn your prose into a constant stream of encrypted and meaningless-so

Milo Fultz 2 Oct 10, 2022
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
An extension for asreview implements a version of the tf-idf feature extractor that saves the matrix and the vocabulary.

Extension - matrix and vocabulary extractor for TF-IDF and Doc2Vec An extension for ASReview that adds a tf-idf extractor that saves the matrix and th

ASReview 4 Jun 17, 2022
Image2pcl - Enter the metaverse with 2D image to 3D projections

Image2PCL Enter the metaverse with 2D image to 3D projections! This is an implem

Benjamin Ho 0 Feb 05, 2022
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech

TFPNER TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech Named entity recognition (NER), which aims at identifyin

1 Feb 07, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
中文問句產生器;使用台達電閱讀理解資料集(DRCD)

Transformer QG on DRCD The inputs of the model refers to we integrate C and A into a new C' in the following form. C' = [c1, c2, ..., [HL], a1, ..., a

Philip 1 Oct 22, 2021
MEDIALpy: MEDIcal Abbreviations Lookup in Python

A small python package that allows the user to look up common medical abbreviations.

Aberystwyth Systems Biology 7 Nov 09, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
Built for cleaning purposes in military institutions

Ferramenta do AL Construído para fins de limpeza em instituições militares. Instalação Requer python = 3.2 pip install -r requirements.txt Usagem Exe

0 Aug 13, 2022
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022
Natural Language Processing library built with AllenNLP 🌲🌱

Custom Natural Language Processing with big and small models 🌲🌱

Recognai 65 Sep 13, 2022
Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Josué Encinar 85 Dec 16, 2022
The official code for “DocTr: Document Image Transformer for Geometric Unwarping and Illumination Correction”, ACM MM, Oral Paper, 2021.

Good news! Our new work exhibits state-of-the-art performances on DocUNet benchmark dataset: DocScanner: Robust Document Image Rectification with Prog

Hao Feng 231 Dec 26, 2022
Easy-to-use CPM for Chinese text generation

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

382 Jan 07, 2023