中文問句產生器;使用台達電閱讀理解資料集(DRCD)

Overview

Transformer QG on DRCD

The inputs of the model refers to

we integrate C and A into a new C' in the following form.
C' = [c1, c2, ..., [HL], a1, ..., a|A|, [HL], ..., c|C|]

Proposed by Ying-Hong Chan & Yao-Chung Fan. (2019). A Re-current BERT-based Model for Question Generation.

我們還有另外一個英文QG: Transformer-QG-on-SQuAD

Features

  • 完整的流程;從微調到模型評分
  • 支援許多先進的語言模型
  • 內建Flask,可快速作為API server

DRCD dataset

台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 DRCD資料集從2,108篇維基條目中整理出10,014篇段落,並從段落中標註出30,000多個問題。

Available models

Use in Transformers

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
  
tokenizer = AutoTokenizer.from_pretrained("p208p2002/bart-drcd-qg-hl")

model = AutoModelForSeq2SeqLM.from_pretrained("p208p2002/bart-drcd-qg-hl")

Expriments

Model Bleu 1 Bleu 2 Bleu 3 Bleu 4 METEOR ROUGE-L
BART-HLSQG 34.25 27.70 22.43 18.13 23.58 36.88

Environment requirements

The hole development is based on Ubuntu system

  1. If you don't have pytorch 1.6+ please install or update first

https://pytorch.org/get-started/locally/

  1. Install packages pip install -r requirements.txt

  2. Setup scorer python setup_scorer.py

  3. Download dataset python init_dataset.py

Training

Seq2Seq LM

usage: train_seq2seq_lm.py [-h]
                           [--base_model {bert-base-chinese,uer/bart-base-chinese-cluecorpussmall,p208p2002/bart-drcd-qg-hl}]
                           [-d {drcd}] [--batch_size BATCH_SIZE]
                           [--epoch EPOCH] [--lr LR] [--dev DEV] [--server]
                           [--run_test] [-fc FROM_CHECKPOINT]

optional arguments:
  -h, --help            show this help message and exit
  --base_model {bert-base-chinese,uer/bart-base-chinese-cluecorpussmall,p208p2002/bart-drcd-qg-hl}
  -d {drcd}, --dataset {drcd}
  --batch_size BATCH_SIZE
  --epoch EPOCH
  --lr LR
  --dev DEV
  --server
  --run_test
  -fc FROM_CHECKPOINT, --from_checkpoint FROM_CHECKPOINT

Run as API server

From pre-trained (recommend)

python train_seq2seq_lm.py --server --base_model p208p2002/bart-drcd-qg-hl

From your own checkpoint

python train_xxx_lm.py --server --base_model YOUR_BASE_MODEL --from_checkpoint FROM_CHECKPOINT

Request example

curl --location --request POST 'http://127.0.0.1:5000/' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'context=[HL]伊隆·里夫·馬斯克[HL]是一名企業家和商業大亨'
{"predict": "哪一個人是一名企業家和商業大亨?"}
Owner
Philip
NLP Engineer and Full Stack Developer
Philip
It analyze the sentiment of the user, whether it is postive or negative.

Sentiment-Analyzer-Tool It analyze the sentiment of the user, whether it is postive or negative. It uses streamlit library for creating this sentiment

Paras Patidar 18 Dec 17, 2022
Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Yoon Kim 43 Dec 23, 2022
NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels

NumPy String-Indexed NumPy String-Indexed is a NumPy extension that allows arrays to be indexed using descriptive string labels, rather than conventio

Aitan Grossman 1 Jan 08, 2022
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

94 Dec 08, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.09

Keon Lee 142 Jan 06, 2023
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

ESPnet 5.9k Jan 03, 2023
Active learning for text classification in Python

Active Learning allows you to efficiently label training data in a small-data scenario.

Webis 375 Dec 28, 2022
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 30, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Just a basic Telegram AI chat bot written in Python using Pyrogram.

Nikko ChatBot Just a basic Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher. A bot token. Installation $ https

ʀᴇxɪɴᴀᴢᴏʀ 2 Oct 21, 2022
Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Codes for processing meeting summarization datasets AMI and ICSI.

Meeting Summarization Dataset Meeting plays an essential part in our daily life, which allows us to share information and collaborate with others. Wit

xcfeng 39 Dec 14, 2022
Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memories using approximate nearest neighbors, in Pytorch

Memorizing Transformers - Pytorch Implementation of Memorizing Transformers (ICLR 2022), attention net augmented with indexing and retrieval of memori

Phil Wang 364 Jan 06, 2023
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

Tao Lei 14 Dec 12, 2022