Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Overview

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

The script can be used for any channel or video for scraping, in addition will provide you with the option to get any automatic captions. Automatic captions are available in Dutch, English, French, German, Indonesian, Italian, Japanese, Korean, Portuguese, Russian, Spanish, Turkish, Vietnamese and more or any, so use it as you wish.

usage:

pip install youtube_transcript_api scrapetube codext

for default channel

python tube.py 

Custom channel

python tube.py UCSs5vZi0U7qHLkUjF3QnaWg

Get all videos for a channel

import scrapetube

videos = scrapetube.get_channel("UCCezIgC97PvUuR4_gbFUs5g")

for video in videos:
    print(video['videoId'])

Filter for manually created transcripts

transcript = transcript_list.find_manually_created_transcript(['de', 'en'])

or automatically generated ones

transcript = transcript_list.find_generated_transcript(['de', 'en'])

The methods find_generated_transcript, find_manually_created_transcript, find_generated_transcript return Transcript objects. They contain metadata regarding the transcript:

print(
    transcript.video_id,
    transcript.language,
    transcript.language_code,
    # whether it has been manually created or generated by YouTube
    transcript.is_generated,
    # whether this transcript can be translated or not
    transcript.is_translatable,
    # a list of languages the transcript can be translated to
    transcript.translation_languages,
)

Codext, contraction of "codecs" and "extension", is a tiny library that gathers a few additional encodings for use with codecs. While imported, it registers new encodings to a proxy codecs registry for making the encodings available from the codecs.(decode|encode|open) calls.

Currently set on Braille codext.encode("Little Endian", "braille") accept even morse

Codecs categories

  • native: the built-in codecs from the original codecs package
  • non-native: this special category regroups all the categories mentioned hereafter
  • base: baseX codecs (e.g. base, base100)
  • binary: codecs working on strings but applying their algorithms on their binary forms (e.g. baudot, manchester)
  • common: common codecs not included in the native ones or simly added for the purpose of standardization (e.g. octal, ordinal)
  • crypto: codecs related to cryptography algorithms (e.g. barbie, rot, xor)
  • language: language-related codecs (e.g. morse, navajo)
  • other: uncategorized codecs (e.g. letters, url)
  • stegano: steganography-related codecs (e.g. sms, resistor)
  • Except the native and non-native categories, the other ones are simply the name of the subdirectories (with "s" right-stripped) of the codext package.
codext.list("binary")
['baudot', 'baudot-spaced', 'baudot-tape', 'bcd', 'bcd-extended0', 'bcd-extended1', 'excess3', 'gray', 'manchester', 'manchester-inverted']
codext.list("language")
['braille', 'leet', 'morse', 'navajo', 'radio', 'southpark', 'southpark-icase', 'tom-tom']
codext.list("native")
['ascii', 'base64_codec', 'big5', 'big5hkscs', 'bz2_codec', 'cp037', 'cp273', 'cp424', 'cp437', 'cp500', 'cp775', 'cp850', 'cp852', 'cp855', 'cp857', 'cp858', 'cp860', 'cp861', 'cp862', 'cp863', ...]

Current channels for scrapping the transcript subtitles in English language and translate them to Braille language

Up to you list, just replace the Youtube channel ID string at 🤯

videoListName = scrapetube.get_channel("UClnw_bcNg4CAzF772qEtq4g")

YouTube uses automatic speech recognition to add automatic captions to videos. The feature is available in English, Dutch, French, German, Italian, Japanese, Korean, Portuguese, Russian, and Spanish. ASR is not available for all videos.

You can eding the language at 😇

transcript = transcript_list.find_generated_transcript(['en']).fetch()

Example output:

https://www.youtube.com/watch?v=ouMK-Q9S7cc
Web3 Foundation - The Next Evolution of the Internet - Dr. Gavin Wood
⠺⠑⠃⠒⠀⠋⠕⠥⠝⠙⠁⠞⠊⠕⠝⠀⠤⠀⠞⠓⠑⠀⠝⠑⠭⠞⠀⠑⠧⠕⠇⠥⠞⠊⠕⠝⠀⠕⠋⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠤⠀⠙⠗⠨⠀⠛⠁⠧⠊⠝⠀⠺⠕⠕⠙
⠊⠀⠞⠓⠊⠝⠅⠀⠞⠓⠑⠗⠑⠀⠺⠑⠗⠑⠀⠁⠀⠇⠕⠞⠀⠕⠋⠀⠏⠑⠕⠏⠇⠑⠀⠞⠓⠁⠞⠀⠗⠑⠁⠇⠇⠽⠀⠃⠑⠇⠊⠑⠧⠑⠙⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠁⠎⠀⠺⠁⠎⠀⠛⠕⠝⠝⠁⠀⠃⠑⠀⠁⠀⠞⠗⠁⠝⠎⠋⠕⠗⠍⠁⠞⠊⠧⠑⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠽⠀⠋⠕⠗⠀⠎⠕⠉⠊⠑⠞⠽⠀⠁⠝⠙⠀⠊⠀⠞⠓⠊⠝⠅⠀⠺⠓⠁⠞⠀⠓⠁⠏⠏⠑⠝⠑⠙⠀⠺⠁⠎⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠁⠎⠀⠙⠑⠎⠊⠛⠝⠑⠙⠀⠊⠝⠀⠎⠥⠉⠓⠀⠁⠀⠺⠁⠽⠀⠞⠓⠁⠞⠀⠊⠞⠀⠁⠇⠇⠕⠺⠑⠙⠀⠊⠞⠀⠺⠁⠎⠀⠋⠇⠑⠭⠊⠃⠇⠑⠀⠊⠞⠀⠁⠇⠇⠕⠺⠑⠙⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠎⠀⠕⠋⠀⠎⠕⠉⠊⠑⠞⠽⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠺⠁⠽⠎⠀⠕⠋⠀⠙⠕⠊⠝⠛⠀⠃⠥⠎⠊⠝⠑⠎⠎⠀⠞⠕⠀⠎⠊⠍⠏⠇⠽⠀⠍⠕⠧⠑⠀⠕⠧⠑⠗⠀⠕⠝⠞⠕⠀⠞⠓⠑⠀⠙⠊⠛⠊⠞⠁⠇⠀⠙⠕⠍⠁⠊⠝⠀⠎⠕⠀⠺⠓⠑⠝⠀⠺⠑⠀⠙⠕⠀⠃⠁⠝⠅⠊⠝⠛⠀⠕⠝⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠑⠀⠎⠞⠊⠇⠇⠀⠥⠎⠑⠀⠁⠀⠃⠁⠝⠅⠀⠺⠑⠀⠎⠞⠊⠇⠇⠀⠥⠎⠑⠀⠕⠥⠗⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠃⠗⠊⠉⠅⠤⠁⠝⠙⠤⠍⠕⠗⠞⠁⠗⠀⠞⠗⠁⠙⠊⠞⠊⠕⠝⠁⠇⠀⠲⠴⠴⠀⠽⠑⠁⠗⠀⠕⠇⠙⠀⠃⠁⠝⠅⠊⠝⠛⠀⠕⠗⠛⠁⠝⠊⠵⠁⠞⠊⠕⠝⠀⠊⠞⠄⠎⠀⠚⠥⠎⠞⠀⠞⠓⠁⠞⠀⠺⠑⠀⠁⠉⠉⠑⠎⠎⠀⠞⠓⠑⠍⠀⠞⠓⠗⠕⠥⠛⠓⠀⠁⠀⠺⠑⠃⠀⠏⠁⠛⠑⠀⠊⠞⠀⠓⠁⠎⠝⠄⠞⠀⠗⠑⠁⠇⠇⠽⠀⠁⠇⠞⠑⠗⠑⠙⠀⠎⠕⠉⠊⠑⠞⠽⠀⠊⠞⠀⠗⠑⠁⠇⠇⠽⠀⠺⠁⠎⠝⠄⠞⠀⠞⠗⠁⠝⠎⠋⠕⠗⠍⠁⠞⠊⠧⠑⠀⠁⠝⠙⠀⠊⠀⠞⠓⠊⠝⠅⠀⠞⠓⠁⠞⠄⠎⠀⠞⠓⠁⠞⠄⠎⠀⠑⠧⠑⠗⠍⠕⠗⠑⠀⠉⠇⠑⠁⠗⠀⠺⠓⠑⠝⠀⠺⠑⠀⠺⠓⠑⠝⠀⠺⠑⠀⠞⠓⠊⠝⠅⠀⠁⠃⠕⠥⠞⠀⠋⠁⠉⠑⠃⠕⠕⠅⠀⠁⠝⠙⠀⠺⠑⠀⠞⠓⠊⠝⠅⠀⠁⠃⠕⠥⠞⠀⠛⠕⠕⠛⠇⠑⠀⠞⠓⠑⠎⠑⠀⠁⠗⠑⠀⠝⠕⠞⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠺⠕⠗⠅⠊⠝⠛⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠏⠑⠕⠏⠇⠑⠀⠺⠕⠗⠅⠊⠝⠛⠀⠞⠕⠛⠑⠞⠓⠑⠗⠀⠊⠝⠀⠗⠑⠁⠇⠊⠞⠽⠀⠞⠓⠑⠽⠄⠗⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠅⠊⠝⠙⠎⠀⠕⠋⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠎⠀⠞⠓⠁⠞⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠓⠊⠑⠗⠁⠗⠉⠓⠊⠉⠁⠇⠀⠕⠗⠛⠁⠝⠊⠵⠁⠞⠊⠕⠝⠎⠀⠞⠓⠁⠞⠀⠓⠁⠧⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠉⠑⠝⠞⠗⠁⠇⠊⠵⠑⠙⠀⠃⠁⠝⠅⠀⠁⠉⠉⠕⠥⠝⠞⠎⠀⠞⠓⠁⠞⠀⠓⠁⠧⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠎⠕⠗⠞⠀⠕⠋⠀⠍⠥⠇⠞⠊⠝⠁⠞⠊⠕⠝⠁⠇⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠀⠁⠎⠀⠁⠇⠇⠀⠕⠋⠀⠞⠓⠑⠀⠧⠁⠗⠊⠕⠥⠎⠀⠕⠞⠓⠑⠗⠀⠋⠕⠗⠞⠥⠝⠑⠀⠢⠴⠴⠀⠉⠕⠗⠏⠕⠗⠁⠞⠑⠀⠉⠕⠍⠏⠁⠝⠊⠑⠎⠀⠊⠝⠀⠗⠑⠁⠇⠊⠞⠽⠀⠞⠕⠀⠉⠓⠁⠝⠛⠑⠀⠎⠕⠉⠊⠑⠞⠽⠀⠺⠑⠀⠗⠑⠁⠇⠇⠽⠀⠝⠑⠑⠙⠀⠞⠕⠀⠙⠕⠀⠎⠕⠍⠑⠞⠓⠊⠝⠛⠀⠃⠑⠞⠞⠑⠗⠀⠞⠓⠁⠝⠀⠉⠗⠑⠁⠞⠊⠝⠛⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠊⠑⠎⠀⠞⠓⠁⠞⠀⠚⠥⠎⠞⠀⠁⠇⠇⠕⠺⠀⠥⠎⠀⠞⠕⠀⠍⠊⠗⠗⠕⠗⠀⠓⠕⠺⠀⠎⠕⠉⠊⠑⠞⠽⠀⠺⠕⠗⠅⠎⠀⠁⠝⠽⠺⠁⠽⠀⠺⠑⠀⠝⠑⠑⠙⠀⠞⠕⠀⠉⠗⠑⠁⠞⠑⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠊⠑⠎⠀⠞⠓⠁⠞⠀⠋⠕⠗⠛⠑⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠺⠕⠗⠅⠀⠺⠊⠞⠓⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠁⠝⠙⠀⠞⠓⠁⠞⠄⠎⠀⠙⠊⠋⠋⠑⠗⠑⠝⠞⠀⠞⠕⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠉⠕⠍⠍⠥⠝⠊⠉⠁⠞⠑⠀⠺⠊⠞⠓⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠊⠞⠄⠎⠀⠁⠇⠎⠕⠀⠛⠕⠞⠀⠞⠕⠀⠃⠑⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠕⠗⠛⠁⠝⠊⠵⠑⠀⠁⠝⠙⠀⠞⠗⠥⠎⠞⠀⠞⠓⠁⠞⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠊⠎⠀⠛⠕⠊⠝⠛⠀⠞⠕⠀⠙⠕⠀⠺⠓⠁⠞⠀⠺⠓⠁⠞⠀⠞⠓⠑⠽⠀⠝⠑⠑⠙⠀⠞⠕⠀⠙⠕⠀⠊⠝⠀⠕⠗⠙⠑⠗⠀⠞⠕⠀⠓⠁⠧⠑⠀⠎⠕⠍⠑⠀⠎⠕⠗⠞⠀⠕⠋⠀⠎⠓⠁⠗⠑⠙⠀⠉⠕⠝⠉⠇⠥⠎⠊⠕⠝⠀⠕⠗⠀⠗⠁⠍⠊⠋⠊⠉⠁⠞⠊⠕⠝⠀⠞⠕⠀⠞⠓⠑⠀⠉⠕⠕⠏⠑⠗⠁⠞⠊⠕⠝⠀⠁⠝⠙⠀⠞⠓⠁⠞⠄⠎⠀⠗⠑⠁⠇⠇⠽⠀⠁⠀⠃⠊⠛⠀⠉⠕⠍⠏⠕⠝⠑⠝⠞⠀⠕⠋⠀⠺⠑⠃⠀⠒⠀⠺⠑⠃⠀⠒⠀⠊⠎⠀⠗⠑⠁⠇⠇⠽⠀⠁⠃⠕⠥⠞⠀⠁⠇⠇⠕⠺⠊⠝⠛⠀⠏⠑⠕⠏⠇⠑⠀⠞⠕⠀⠉⠕⠍⠑⠀⠞⠕⠛⠑⠞⠓⠑⠗⠀⠁⠝⠙⠀⠉⠕⠕⠗⠙⠊⠝⠁⠞⠑⠀⠞⠓⠑⠊⠗⠀⠑⠋⠋⠕⠗⠞⠎⠀⠋⠕⠗⠀⠎⠕⠍⠑⠞⠓⠊⠝⠛⠀⠛⠗⠑⠁⠞⠑⠗⠀⠞⠓⠑⠀⠞⠓⠁⠝⠀⠞⠓⠑⠀⠎⠥⠍⠀⠕⠋⠀⠊⠞⠎⠀⠏⠁⠗⠞⠎⠀⠪⠍⠥⠎⠊⠉⠻

With Git Actions Workflow file for this run as example in real-time

available OS's: [ windows-latest, macos-latest, ubuntu-latest ]

name: Cross-platform matrix run
on: [push]
jobs:
  build:
    runs-on: ${{ matrix.os }}
    strategy:
      matrix:
        os: [ubuntu-latest]
        python-version: ['3.6', '3.9']
        exclude:
          - os: ubuntu-latest
            python-version: '3.6'
    steps:
      - uses: actions/[email protected]
      - name: Set up Python
        uses: actions/[email protected]
        with:
          python-version: ${{ matrix.python-version }}
      - name: Install dependencies 
        run: pip install youtube_transcript_api scrapetube codext
      - name: Web3 Foundation videos to braille language 
        run: python tube.py

For Support && Nominations

  • Display name. KSMNETWORK

  • Email [email protected]

  • Riot @gtoocool:matrix.org

  • KUSAMA (KSM) Address

  • H1bSKJxoxzxYRCdGQutVqFGeW7xU3AcN6vyEdZBU7Qb1rsZ

  • PolkaDOT (DOT) Address:

  • 15FxvBFDd3X7H9qcMGqsiuvFYEg4D3mBoTA2LQufreysTHKA

  • https://ksm.network

Owner
Little Endian
Riot @gtoocool:matrix.org                  KUSAMA Address:  H1bSKJxoxzxYRCdGQutVqFGeW7xU3AcN6vyEdZBU7Qb1rsZ
Little Endian
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
Beyond Paragraphs: NLP for Long Sequences

Beyond Paragraphs: NLP for Long Sequences

AI2 338 Dec 02, 2022
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.

This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi

Aarif Munwar Jahan 2 Jan 04, 2023
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts. by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC

Xudong (Frank) Wang 205 Dec 16, 2022
Write Alphabet, Words and Sentences with your eyes.

The-Next-Gen-AI-Eye-Writer The Eye tracking Technique has become one of the most popular techniques within the human and computer interaction era, thi

Rohan Kasabe 2 Apr 05, 2022
Package for controllable summarization

summarizers summarizers is package for controllable summarization based CTRLsum. currently, we only supports English. It doesn't work in other languag

Hyunwoong Ko 72 Dec 07, 2022
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 358 Dec 24, 2022
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields

Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The

60 Dec 12, 2022
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
A machine learning model for analyzing text for user sentiment and determine whether its a positive, neutral, or negative review.

Sentiment Analysis on Yelp's Dataset Author: Roberto Sanchez, Talent Path: D1 Group Docker Deployment: Deployment of this application can be found her

Roberto Sanchez 0 Aug 04, 2021
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati

1.5k Nov 14, 2022
CLIPfa: Connecting Farsi Text and Images

CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they

Sajjad Ayoubi 66 Dec 14, 2022