Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Overview

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

The script can be used for any channel or video for scraping, in addition will provide you with the option to get any automatic captions. Automatic captions are available in Dutch, English, French, German, Indonesian, Italian, Japanese, Korean, Portuguese, Russian, Spanish, Turkish, Vietnamese and more or any, so use it as you wish.

usage:

pip install youtube_transcript_api scrapetube codext

for default channel

python tube.py 

Custom channel

python tube.py UCSs5vZi0U7qHLkUjF3QnaWg

Get all videos for a channel

import scrapetube

videos = scrapetube.get_channel("UCCezIgC97PvUuR4_gbFUs5g")

for video in videos:
    print(video['videoId'])

Filter for manually created transcripts

transcript = transcript_list.find_manually_created_transcript(['de', 'en'])

or automatically generated ones

transcript = transcript_list.find_generated_transcript(['de', 'en'])

The methods find_generated_transcript, find_manually_created_transcript, find_generated_transcript return Transcript objects. They contain metadata regarding the transcript:

print(
    transcript.video_id,
    transcript.language,
    transcript.language_code,
    # whether it has been manually created or generated by YouTube
    transcript.is_generated,
    # whether this transcript can be translated or not
    transcript.is_translatable,
    # a list of languages the transcript can be translated to
    transcript.translation_languages,
)

Codext, contraction of "codecs" and "extension", is a tiny library that gathers a few additional encodings for use with codecs. While imported, it registers new encodings to a proxy codecs registry for making the encodings available from the codecs.(decode|encode|open) calls.

Currently set on Braille codext.encode("Little Endian", "braille") accept even morse

Codecs categories

  • native: the built-in codecs from the original codecs package
  • non-native: this special category regroups all the categories mentioned hereafter
  • base: baseX codecs (e.g. base, base100)
  • binary: codecs working on strings but applying their algorithms on their binary forms (e.g. baudot, manchester)
  • common: common codecs not included in the native ones or simly added for the purpose of standardization (e.g. octal, ordinal)
  • crypto: codecs related to cryptography algorithms (e.g. barbie, rot, xor)
  • language: language-related codecs (e.g. morse, navajo)
  • other: uncategorized codecs (e.g. letters, url)
  • stegano: steganography-related codecs (e.g. sms, resistor)
  • Except the native and non-native categories, the other ones are simply the name of the subdirectories (with "s" right-stripped) of the codext package.
codext.list("binary")
['baudot', 'baudot-spaced', 'baudot-tape', 'bcd', 'bcd-extended0', 'bcd-extended1', 'excess3', 'gray', 'manchester', 'manchester-inverted']
codext.list("language")
['braille', 'leet', 'morse', 'navajo', 'radio', 'southpark', 'southpark-icase', 'tom-tom']
codext.list("native")
['ascii', 'base64_codec', 'big5', 'big5hkscs', 'bz2_codec', 'cp037', 'cp273', 'cp424', 'cp437', 'cp500', 'cp775', 'cp850', 'cp852', 'cp855', 'cp857', 'cp858', 'cp860', 'cp861', 'cp862', 'cp863', ...]

Current channels for scrapping the transcript subtitles in English language and translate them to Braille language

Up to you list, just replace the Youtube channel ID string at 🤯

videoListName = scrapetube.get_channel("UClnw_bcNg4CAzF772qEtq4g")

YouTube uses automatic speech recognition to add automatic captions to videos. The feature is available in English, Dutch, French, German, Italian, Japanese, Korean, Portuguese, Russian, and Spanish. ASR is not available for all videos.

You can eding the language at 😇

transcript = transcript_list.find_generated_transcript(['en']).fetch()

Example output:

https://www.youtube.com/watch?v=ouMK-Q9S7cc
Web3 Foundation - The Next Evolution of the Internet - Dr. Gavin Wood
⠺⠑⠃⠒⠀⠋⠕⠥⠝⠙⠁⠞⠊⠕⠝⠀⠤⠀⠞⠓⠑⠀⠝⠑⠭⠞⠀⠑⠧⠕⠇⠥⠞⠊⠕⠝⠀⠕⠋⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠤⠀⠙⠗⠨⠀⠛⠁⠧⠊⠝⠀⠺⠕⠕⠙
⠊⠀⠞⠓⠊⠝⠅⠀⠞⠓⠑⠗⠑⠀⠺⠑⠗⠑⠀⠁⠀⠇⠕⠞⠀⠕⠋⠀⠏⠑⠕⠏⠇⠑⠀⠞⠓⠁⠞⠀⠗⠑⠁⠇⠇⠽⠀⠃⠑⠇⠊⠑⠧⠑⠙⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠁⠎⠀⠺⠁⠎⠀⠛⠕⠝⠝⠁⠀⠃⠑⠀⠁⠀⠞⠗⠁⠝⠎⠋⠕⠗⠍⠁⠞⠊⠧⠑⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠽⠀⠋⠕⠗⠀⠎⠕⠉⠊⠑⠞⠽⠀⠁⠝⠙⠀⠊⠀⠞⠓⠊⠝⠅⠀⠺⠓⠁⠞⠀⠓⠁⠏⠏⠑⠝⠑⠙⠀⠺⠁⠎⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠁⠎⠀⠙⠑⠎⠊⠛⠝⠑⠙⠀⠊⠝⠀⠎⠥⠉⠓⠀⠁⠀⠺⠁⠽⠀⠞⠓⠁⠞⠀⠊⠞⠀⠁⠇⠇⠕⠺⠑⠙⠀⠊⠞⠀⠺⠁⠎⠀⠋⠇⠑⠭⠊⠃⠇⠑⠀⠊⠞⠀⠁⠇⠇⠕⠺⠑⠙⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠎⠀⠕⠋⠀⠎⠕⠉⠊⠑⠞⠽⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠺⠁⠽⠎⠀⠕⠋⠀⠙⠕⠊⠝⠛⠀⠃⠥⠎⠊⠝⠑⠎⠎⠀⠞⠕⠀⠎⠊⠍⠏⠇⠽⠀⠍⠕⠧⠑⠀⠕⠧⠑⠗⠀⠕⠝⠞⠕⠀⠞⠓⠑⠀⠙⠊⠛⠊⠞⠁⠇⠀⠙⠕⠍⠁⠊⠝⠀⠎⠕⠀⠺⠓⠑⠝⠀⠺⠑⠀⠙⠕⠀⠃⠁⠝⠅⠊⠝⠛⠀⠕⠝⠀⠞⠓⠑⠀⠊⠝⠞⠑⠗⠝⠑⠞⠀⠺⠑⠀⠎⠞⠊⠇⠇⠀⠥⠎⠑⠀⠁⠀⠃⠁⠝⠅⠀⠺⠑⠀⠎⠞⠊⠇⠇⠀⠥⠎⠑⠀⠕⠥⠗⠀⠑⠭⠊⠎⠞⠊⠝⠛⠀⠃⠗⠊⠉⠅⠤⠁⠝⠙⠤⠍⠕⠗⠞⠁⠗⠀⠞⠗⠁⠙⠊⠞⠊⠕⠝⠁⠇⠀⠲⠴⠴⠀⠽⠑⠁⠗⠀⠕⠇⠙⠀⠃⠁⠝⠅⠊⠝⠛⠀⠕⠗⠛⠁⠝⠊⠵⠁⠞⠊⠕⠝⠀⠊⠞⠄⠎⠀⠚⠥⠎⠞⠀⠞⠓⠁⠞⠀⠺⠑⠀⠁⠉⠉⠑⠎⠎⠀⠞⠓⠑⠍⠀⠞⠓⠗⠕⠥⠛⠓⠀⠁⠀⠺⠑⠃⠀⠏⠁⠛⠑⠀⠊⠞⠀⠓⠁⠎⠝⠄⠞⠀⠗⠑⠁⠇⠇⠽⠀⠁⠇⠞⠑⠗⠑⠙⠀⠎⠕⠉⠊⠑⠞⠽⠀⠊⠞⠀⠗⠑⠁⠇⠇⠽⠀⠺⠁⠎⠝⠄⠞⠀⠞⠗⠁⠝⠎⠋⠕⠗⠍⠁⠞⠊⠧⠑⠀⠁⠝⠙⠀⠊⠀⠞⠓⠊⠝⠅⠀⠞⠓⠁⠞⠄⠎⠀⠞⠓⠁⠞⠄⠎⠀⠑⠧⠑⠗⠍⠕⠗⠑⠀⠉⠇⠑⠁⠗⠀⠺⠓⠑⠝⠀⠺⠑⠀⠺⠓⠑⠝⠀⠺⠑⠀⠞⠓⠊⠝⠅⠀⠁⠃⠕⠥⠞⠀⠋⠁⠉⠑⠃⠕⠕⠅⠀⠁⠝⠙⠀⠺⠑⠀⠞⠓⠊⠝⠅⠀⠁⠃⠕⠥⠞⠀⠛⠕⠕⠛⠇⠑⠀⠞⠓⠑⠎⠑⠀⠁⠗⠑⠀⠝⠕⠞⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠺⠕⠗⠅⠊⠝⠛⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠏⠑⠕⠏⠇⠑⠀⠺⠕⠗⠅⠊⠝⠛⠀⠞⠕⠛⠑⠞⠓⠑⠗⠀⠊⠝⠀⠗⠑⠁⠇⠊⠞⠽⠀⠞⠓⠑⠽⠄⠗⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠅⠊⠝⠙⠎⠀⠕⠋⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠎⠀⠞⠓⠁⠞⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠓⠊⠑⠗⠁⠗⠉⠓⠊⠉⠁⠇⠀⠕⠗⠛⠁⠝⠊⠵⠁⠞⠊⠕⠝⠎⠀⠞⠓⠁⠞⠀⠓⠁⠧⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠉⠑⠝⠞⠗⠁⠇⠊⠵⠑⠙⠀⠃⠁⠝⠅⠀⠁⠉⠉⠕⠥⠝⠞⠎⠀⠞⠓⠁⠞⠀⠓⠁⠧⠑⠀⠞⠓⠑⠀⠎⠁⠍⠑⠀⠎⠕⠗⠞⠀⠕⠋⠀⠍⠥⠇⠞⠊⠝⠁⠞⠊⠕⠝⠁⠇⠀⠎⠞⠗⠥⠉⠞⠥⠗⠑⠀⠁⠎⠀⠁⠇⠇⠀⠕⠋⠀⠞⠓⠑⠀⠧⠁⠗⠊⠕⠥⠎⠀⠕⠞⠓⠑⠗⠀⠋⠕⠗⠞⠥⠝⠑⠀⠢⠴⠴⠀⠉⠕⠗⠏⠕⠗⠁⠞⠑⠀⠉⠕⠍⠏⠁⠝⠊⠑⠎⠀⠊⠝⠀⠗⠑⠁⠇⠊⠞⠽⠀⠞⠕⠀⠉⠓⠁⠝⠛⠑⠀⠎⠕⠉⠊⠑⠞⠽⠀⠺⠑⠀⠗⠑⠁⠇⠇⠽⠀⠝⠑⠑⠙⠀⠞⠕⠀⠙⠕⠀⠎⠕⠍⠑⠞⠓⠊⠝⠛⠀⠃⠑⠞⠞⠑⠗⠀⠞⠓⠁⠝⠀⠉⠗⠑⠁⠞⠊⠝⠛⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠊⠑⠎⠀⠞⠓⠁⠞⠀⠚⠥⠎⠞⠀⠁⠇⠇⠕⠺⠀⠥⠎⠀⠞⠕⠀⠍⠊⠗⠗⠕⠗⠀⠓⠕⠺⠀⠎⠕⠉⠊⠑⠞⠽⠀⠺⠕⠗⠅⠎⠀⠁⠝⠽⠺⠁⠽⠀⠺⠑⠀⠝⠑⠑⠙⠀⠞⠕⠀⠉⠗⠑⠁⠞⠑⠀⠞⠑⠉⠓⠝⠕⠇⠕⠛⠊⠑⠎⠀⠞⠓⠁⠞⠀⠋⠕⠗⠛⠑⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠺⠕⠗⠅⠀⠺⠊⠞⠓⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠁⠝⠙⠀⠞⠓⠁⠞⠄⠎⠀⠙⠊⠋⠋⠑⠗⠑⠝⠞⠀⠞⠕⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠉⠕⠍⠍⠥⠝⠊⠉⠁⠞⠑⠀⠺⠊⠞⠓⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠊⠞⠄⠎⠀⠁⠇⠎⠕⠀⠛⠕⠞⠀⠞⠕⠀⠃⠑⠀⠝⠑⠺⠀⠺⠁⠽⠎⠀⠕⠋⠀⠃⠑⠊⠝⠛⠀⠁⠃⠇⠑⠀⠞⠕⠀⠕⠗⠛⠁⠝⠊⠵⠑⠀⠁⠝⠙⠀⠞⠗⠥⠎⠞⠀⠞⠓⠁⠞⠀⠑⠁⠉⠓⠀⠕⠞⠓⠑⠗⠀⠊⠎⠀⠛⠕⠊⠝⠛⠀⠞⠕⠀⠙⠕⠀⠺⠓⠁⠞⠀⠺⠓⠁⠞⠀⠞⠓⠑⠽⠀⠝⠑⠑⠙⠀⠞⠕⠀⠙⠕⠀⠊⠝⠀⠕⠗⠙⠑⠗⠀⠞⠕⠀⠓⠁⠧⠑⠀⠎⠕⠍⠑⠀⠎⠕⠗⠞⠀⠕⠋⠀⠎⠓⠁⠗⠑⠙⠀⠉⠕⠝⠉⠇⠥⠎⠊⠕⠝⠀⠕⠗⠀⠗⠁⠍⠊⠋⠊⠉⠁⠞⠊⠕⠝⠀⠞⠕⠀⠞⠓⠑⠀⠉⠕⠕⠏⠑⠗⠁⠞⠊⠕⠝⠀⠁⠝⠙⠀⠞⠓⠁⠞⠄⠎⠀⠗⠑⠁⠇⠇⠽⠀⠁⠀⠃⠊⠛⠀⠉⠕⠍⠏⠕⠝⠑⠝⠞⠀⠕⠋⠀⠺⠑⠃⠀⠒⠀⠺⠑⠃⠀⠒⠀⠊⠎⠀⠗⠑⠁⠇⠇⠽⠀⠁⠃⠕⠥⠞⠀⠁⠇⠇⠕⠺⠊⠝⠛⠀⠏⠑⠕⠏⠇⠑⠀⠞⠕⠀⠉⠕⠍⠑⠀⠞⠕⠛⠑⠞⠓⠑⠗⠀⠁⠝⠙⠀⠉⠕⠕⠗⠙⠊⠝⠁⠞⠑⠀⠞⠓⠑⠊⠗⠀⠑⠋⠋⠕⠗⠞⠎⠀⠋⠕⠗⠀⠎⠕⠍⠑⠞⠓⠊⠝⠛⠀⠛⠗⠑⠁⠞⠑⠗⠀⠞⠓⠑⠀⠞⠓⠁⠝⠀⠞⠓⠑⠀⠎⠥⠍⠀⠕⠋⠀⠊⠞⠎⠀⠏⠁⠗⠞⠎⠀⠪⠍⠥⠎⠊⠉⠻

With Git Actions Workflow file for this run as example in real-time

available OS's: [ windows-latest, macos-latest, ubuntu-latest ]

name: Cross-platform matrix run
on: [push]
jobs:
  build:
    runs-on: ${{ matrix.os }}
    strategy:
      matrix:
        os: [ubuntu-latest]
        python-version: ['3.6', '3.9']
        exclude:
          - os: ubuntu-latest
            python-version: '3.6'
    steps:
      - uses: actions/[email protected]
      - name: Set up Python
        uses: actions/[email protected]
        with:
          python-version: ${{ matrix.python-version }}
      - name: Install dependencies 
        run: pip install youtube_transcript_api scrapetube codext
      - name: Web3 Foundation videos to braille language 
        run: python tube.py

For Support && Nominations

  • Display name. KSMNETWORK

  • Email [email protected]

  • Riot @gtoocool:matrix.org

  • KUSAMA (KSM) Address

  • H1bSKJxoxzxYRCdGQutVqFGeW7xU3AcN6vyEdZBU7Qb1rsZ

  • PolkaDOT (DOT) Address:

  • 15FxvBFDd3X7H9qcMGqsiuvFYEg4D3mBoTA2LQufreysTHKA

  • https://ksm.network

Owner
Little Endian
Riot @gtoocool:matrix.org                  KUSAMA Address:  H1bSKJxoxzxYRCdGQutVqFGeW7xU3AcN6vyEdZBU7Qb1rsZ
Little Endian
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
The source code of "Language Models are Few-shot Multilingual Learners" (MRL @ EMNLP 2021)

Language Models are Few-shot Multilingual Learners Paper This is the source code of the paper [Arxiv] [ACL Anthology]: This code has been written usin

Genta Indra Winata 45 Nov 21, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
Index different CKAN entities in Solr, not just datasets

ckanext-sitesearch Index different CKAN entities in Solr, not just datasets Requirements This extension requires CKAN 2.9 or higher and Python 3 Featu

Open Knowledge Foundation 3 Dec 02, 2022
CLIPfa: Connecting Farsi Text and Images

CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they

Sajjad Ayoubi 66 Dec 14, 2022
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
Code Generation using a large neural network called GPT-J

CodeGenX is a Code Generation system powered by Artificial Intelligence! It is delivered to you in the form of a Visual Studio Code Extension and is Free and Open-source!

DeepGenX 389 Dec 31, 2022
SimCTG - A Contrastive Framework for Neural Text Generation

A Contrastive Framework for Neural Text Generation Authors: Yixuan Su, Tian Lan,

Yixuan Su 345 Jan 03, 2023
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.

This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi

Aarif Munwar Jahan 2 Jan 04, 2023
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022