Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Overview

Tokenizer

Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code en liste tokens. En l'occurence, contrairement à Flex and Yacc, la liste de token sera hiérarchisée et les tokens sont typés.

Qu'est-ce que c'est quoi dis donc un token ?

Un token, litteralement, c'est un jeton... Bof bof comme définition... Repprenons. Un token c'est une chaîne de caractères qui, ensemble, ont une signification. La chaîne de caractères qui forme un jeton est appelée Lexeme.

Et à quoi ça sert ?

La tokenization, c'est la prmière étape de la compilation ou de l'interprétation de la plupart des langages informatiques. Prenons Python par exemple, l'ordinateur ne sait absolument pas quoi faire avec le ficher qu'on lui donne, il le découpe donc pour avoir chacun des mots du code et pouvoir comprendre ce qu'on lui demande.


Exemple :

Du code python comme celui ci :

def hello(name) :
    print("Hello", name, "!")

sera convertit en YAML (ou n'importe quel autre langage de stockage de données comme JSON par exemple)

---
- {value: 'def', type: function.declaration}
- {value: 'hello', type: name.funciton.declaration}
- {value: '(', type: punctuation.begin}
- {value: 'name', type: parameter}
- {value: ')', type: punctuation.end}
- {value: ':', type: start.node}
- - {value: 'print', type: function}
  - {value: '(', type: punctuation.begin}
  - {value: '"Hello"', type: string}
  - {value: ',', type: separator}
  - {value: 'name', type: variable}
  - {value: ',', type: separator}
  - {value: '"!"', type: string}
  - {value: ')', type: punctuation.end}

Ici les tokens sont hiérarchisés et typés, c'est à dire que pour chaque nœud, une nouvelle liste est créée et pour chaque token, un attribut de type lui est appliqué.

Le typage des tokens peut être utile car le tokenizateur peut, avec une grammaire, faire un fichier de coloration syntaxique si l'on indique dans le type la couleur du token.


Spécifications

technologie outil
Langage Python
Version du langage 3.10
Gestionnaire des packets PIP
Gestionnaire d'environnement VirtualEnvironment
Environnement Windows 7/10
Librairie PyYaml, re

Installation

pip install -e git+https://github.com/Manolo-dev/tokenizer.git#egg=tokenizer


To do list

  • Grammaire
  • Classe Token
  • Classe Node
  • Main
  • Gestion des erreurs
  • Lecteur Yaml

Grammaire

Oui, il faut une grammaire à l'outil de grammaire ! Grammaception !

Corps

Le corps se compose d'au moins deux parties, variables, qui contient des expressions regexp, et les modules, dont main, seul module obligatoire.

  • variables

  • main

Module

main est le seul module qui est appelé sans qu'on l'incluse manuellement.

Les modules traitent le code et s'occupe de la grosse part du travail, ils peuvent utiliser les variables définies dans le module, dans un module encore ouvert (variables locale) ou dans variables.

Méthodes

  • include, inclut un module.

  • match, corresptond à un SI token correspond FAIRE, assigne à l'objet courant le token trouvé et éxécute le module donné (nommé ou non).

  • save, assigne un type à l'objet courant et enregistre le token dans la liste des tokens.

  • if, vérifie la condition donnée (liste de trois arguments, le premier l'opérateur, le second et le troisième les valeurs à tester). Exemple: if: ['==', ;a, ;b]

  • begin, crée un nœud et le débute.

  • end, ferme le nœud.

  • ignore, ne fait pas avancer le texte.

  • var, modifie les variables de la même manière que le module variables, la variable _ représente le token trouvé.

  • error, génère une erreur (équivalent au raise python)

  • print, affiche le texte donné dans la console.

Variables

Il y deux moyens d'utiliser les variables. Dans le cas d'une variable d'exemple appelée var, on peut faire :

  • ;var, seul dans l'élément.

  • {{var}}, peut-être placé n'importe où dans l'élément.

  • str:n, permet de supprimer n caractères à la chaîne str.

Exemple

variables:
  open: '\('
  close: '\)'
main:
  - match: ;open
    save: 'open'
    begin: # Ceci est un module non nommé
    - match: ;close
      save: 'close'
      end: 1
    - include: 'main'
  - match: '[^()]+' # pour éviter de prendre des parenthèses involontairement
    save: 'other'
  - match: ;close
    error: il y a une parenthèse de fermeture en trop

Cette grammaire fait de la parenthétisation simple, en simple, ça transforme ceci :

1 / (3 * (1 + 2))

en :

---
- {value: '1 / ', type: 'other'}
- {value: '(', type: 'open'}
- - {value: '3 * ', type: 'other'}
  - {value: '(', type: 'open'}
  - - {value: '1 + 2', type: 'other'}
  - {value: ')', type: 'close'}
- {value: ')', type: 'close'}
Owner
Manolo
Hi ! My name is Manolo, I am 18 years old. I have been programming since I was 11 or 12 (I can't quite remember) with BASIC CASIO. And i love code !
Manolo
Simple and efficient RevNet-Library with DeepSpeed support

RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory

Lucas Nestler 112 Dec 05, 2022
Examples of using sparse attention, as in "Generating Long Sequences with Sparse Transformers"

Status: Archive (code is provided as-is, no updates expected) Update August 2020: For an example repository that achieves state-of-the-art modeling pe

OpenAI 1.3k Dec 28, 2022
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings

Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Python functions for summarizing and improving voice dictation input.

Helpmespeak Help me speak uses Python functions for summarizing and improving voice dictation input. Get started with OpenAI gpt-3 OpenAI is a amazing

Margarita Humanitarian Foundation 6 Dec 17, 2022
Write Alphabet, Words and Sentences with your eyes.

The-Next-Gen-AI-Eye-Writer The Eye tracking Technique has become one of the most popular techniques within the human and computer interaction era, thi

Rohan Kasabe 2 Apr 05, 2022
Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries

GTFONow Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries. Features Automatically escalate privileges using miscon

101 Jan 03, 2023
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i

Yiming Cui 463 Dec 30, 2022
Curso práctico: NLP de cero a cien 🤗

Curso Práctico: NLP de cero a cien Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utili

Somos NLP 147 Jan 06, 2023
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
Blazing fast language detection using fastText model

Luga A blazing fast language detection using fastText's language models Luga is a Swahili word for language. fastText provides a blazing fast language

Prayson Wilfred Daniel 18 Dec 20, 2022
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
DeepPavlov Tutorials

DeepPavlov tutorials DeepPavlov: Sentence Classification with Word Embeddings DeepPavlov: Transfer Learning with BERT. Classification, Tagging, QA, Ze

Neural Networks and Deep Learning lab, MIPT 28 Sep 13, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
jiant is an NLP toolkit

jiant is an NLP toolkit The multitask and transfer learning toolkit for natural language processing research Why should I use jiant? jiant supports mu

ML² AT CILVR 1.5k Jan 04, 2023
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022