Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Overview

Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2018) dataset, where each question in the dev set is annotated to add a contextual disfluency using the paragraph as a source of distractors.

The final dataset consists of ~12k (disfluent question, answer) pairs. Over 90% of the disfluencies are corrections or restarts, making it a much harder test set for disfluency correction. Disfl-QA aims to fill a major gap between speech and NLP research community. We hope the dataset can serve as a benchmark dataset for testing robustness of models against disfluent inputs.

Our expriments reveal that the state-of-the-art models are brittle when subjected to disfluent inputs from Disfl-QA. Detailed experiments and analyses can be found in our paper.

Dataset Description

Disfl-QA consists of ~12k disfluent questions with the following train/dev/test splits:

File Questions
train.json 7182
dev.json 1000
test.json 3643

Each JSON file consists of original question (SQuAD-v2) and disfluent question (Disfl-QA) in the following format:

{ 
  "squad_v2_id":
  {
    "original": Original question from SQuAD-v2,
    "disfluent": Disfluent question from Disfl-QA
  }, ...
}

Note: The squad_v2_id corresponds to the unique data.paragraphs.qas.id in SQuAD-v2 development set.

Here's an example from the dataset:

 {
  "56ddde6b9a695914005b9628": {
    "original": "In what country is Normandy located?",
    "disfluent": "In what country is Norse found no wait Normandy not Norse?"
  },
  "56ddde6b9a695914005b9629": {
    "original": "When were the Normans in Normandy?",
    "disfluent": "From which countries no tell me when were the Normans in Normandy?"
  },
  "56ddde6b9a695914005b962a": {
    "original": "From which countries did the Norse originate?",
    "disfluent": "From which Norse leader I mean countries did the Norse originate?"
  },
  "56ddde6b9a695914005b962b": {
    "original": "Who was the Norse leader?",
    "disfluent": "When I mean Who was the Norse leader?"
  },
  "56ddde6b9a695914005b962c": {
    "original": "What century did the Normans first gain their separate identity?",
    "disfluent": "When no what century did the Normans first gain their separate identity?"
  },
 }

Citation

If you use or discuss this dataset in your work, please cite it as follows:

@inproceedings{gupta-etal-2021-disflqa,
    title = "{Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering}",
    author = "Gupta, Aditya and Xu, Jiacheng and Upadhyay, Shyam and Yang, Diyi and Faruqui, Manaal",
    booktitle = "Findings of ACL",
    year = "2021"
}

License

Disfl-QA dataset is licensed under CC BY 4.0.

Contact

If you have a technical question regarding the dataset or publication, please create an issue in this repository.

Owner
Google Research Datasets
Datasets released by Google Research
Google Research Datasets
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022
Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

0 Feb 13, 2022
A list of NLP(Natural Language Processing) tutorials

NLP Tutorial A list of NLP(Natural Language Processing) tutorials built on PyTorch. Table of Contents A step-by-step tutorial on how to implement and

Allen Lee 1.3k Dec 25, 2022
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

9 Dec 28, 2021
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021
Code for papers "Generation-Augmented Retrieval for Open-Domain Question Answering" and "Reader-Guided Passage Reranking for Open-Domain Question Answering", ACL 2021

This repo provides the code of the following papers: (GAR) "Generation-Augmented Retrieval for Open-domain Question Answering", ACL 2021 (RIDER) "Read

morning 49 Dec 26, 2022
Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement

MTFAA-Net Unofficial PyTorch implementation of Baidu's MTFAA-Net: "Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speec

Shimin Zhang 87 Dec 19, 2022
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
Write Python in Urdu - اردو میں کوڈ لکھیں

UrduPython Write simple Python in Urdu. How to Use Write Urdu code in سامپل۔پے The mappings are as following: "۔": ".", "،":

Saad A. Bazaz 26 Nov 27, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
Club chatbot

Chatbot Club chatbot Instructions to get the Chatterbot working Step 1. First make sure you are using a version of Python 3 or newer. To check your ve

5 Mar 07, 2022
Python functions for summarizing and improving voice dictation input.

Helpmespeak Help me speak uses Python functions for summarizing and improving voice dictation input. Get started with OpenAI gpt-3 OpenAI is a amazing

Margarita Humanitarian Foundation 6 Dec 17, 2022
Twewy-discord-chatbot - Build a Discord AI Chatbot that Speaks like Your Favorite Character

Build a Discord AI Chatbot that Speaks like Your Favorite Character! This is a Discord AI Chatbot that uses the Microsoft DialoGPT conversational mode

Lynn Zheng 231 Dec 30, 2022
Implementation of TTS with combination of Tacotron2 and HiFi-GAN

Tacotron2-HiFiGAN-master Implementation of TTS with combination of Tacotron2 and HiFi-GAN for Mandarin TTS. Inference In order to inference, we need t

SunLu Z 7 Nov 11, 2022
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

17 Dec 14, 2022