Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Overview

Transformers-for-NLP-2nd-Edition

drawing

@copyright 2022, Packt Publishing, Denis Rothman

Contact me for any question you have on LinkedIn
Get the book on Amazon

Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Key Features

Implement models, such as BERT, Reformer, and T5, that outperform classical language models
Compare NLP applications using GPT-3, GPT-2, and other transformers
Analyze advanced use cases, including polysemy, cross-lingual learning, and computer vision

Book Description

Transformers are a game-changer for natural language understanding (NLU) and have become one of the pillars of artificial intelligence.

Transformers for Natural Language Processing, 2nd Edition, investigates deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question-answering, and many more NLP domains with transformers.

An Industry 4.0 AI specialist needs to be adaptable; knowing just one NLP platform is not enough anymore. Different platforms have different benefits depending on the application, whether it's cost, flexibility, ease of implementation, results, or performance. In this book, we analyze numerous use cases with Hugging Face, Google Trax, OpenAI, and AllenNLP.

This book takes transformers' capabilities further by combining multiple NLP techniques, such as sentiment analysis, named entity recognition, and semantic role labeling, to analyze complex use cases, such as dissecting fake news on Twitter. Also, see how transformers can create code using just a brief description.

By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models to various datasets.

What you will learn

Discover new ways of performing NLP techniques with the latest pretrained transformers
Grasp the workings of the original Transformer, GPT-3, BERT, T5, DeBERTa, and Reformer
Create language understanding Python programs using concepts that outperform classical deep learning models
Apply Python, TensorFlow, and PyTorch programs to sentiment analysis, text summarization, speech recognition, machine translations, and more
Measure the productivity of key transformers to define their scope, potential, and limits in production

Who This Book Is For

If you want to learn about and apply transformers to your natural language (and image) data, this book is for you.

A good understanding of NLP, Python, and deep learning is required to benefit most from this book. Many platforms covered in this book provide interactive user interfaces, which allow readers with a general interest in NLP and AI to follow several chapters of this book.

Table of Contents

1.What are Transformers?
2.Getting Started with the Architecture of the Transformer Model
3.Fine-Tuning BERT models
4.Pretraining a RoBERTa Model from Scratch
5.Downstream NLP Tasks with Transformers
6.Machine Translation with the Transformer
7.The Rise of Suprahuman Transformers with GPT-3 Engines
8.Applying Transformers to Legal and Financial Documents for AI Text Summarization
9.Matching Tokenizers and Datasets
10.Semantic Role Labeling with BERT-Based Transformers
11.Let Your Data Do the Talking: Story, Questions, and Answers
12.Detecting Customer Emotions to Make Predictions
13.Analyzing Fake News with Transformers
14.Interpreting Black Box Transformer Models
15.From NLP to Task-Agnostic Transformer Models
16.The Emergence of Transformer-Driven Copilots
Appendix I: Terminology of Transformer Models
Appendix II: Hardware Constraints for Transformer Models
And more!

Owner
Denis Rothman
Artificial Intelligence,Machine Learning, Deep Learning : SCM & APS Expert, Author, Speaker, and AI Instructor
Denis Rothman
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
Transcribing audio files using Hugging Face's implementation of Wav2Vec2 + "chain-linking" NLP tasks to combine speech-to-text with downstream tasks like translation and summarisation.

PART 2: CHAIN LINKING AUDIO-TO-TEXT NLP TASKS 2A: TRANSCRIBE-TRANSLATE-SENTIMENT-ANALYSIS In notebook3.0, I demo a simple workflow to: transcribe a lo

Chua Chin Hon 30 Jul 13, 2022
This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 03, 2023
Python package for performing Entity and Text Matching using Deep Learning.

DeepMatcher DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and util

461 Dec 28, 2022
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022
Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation

Diego 1 Mar 20, 2022
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
PyTranslator é simultaneamente um editor e tradutor de texto com diversos recursos e interface feito com coração e 100% em Python

PyTranslator O Que é e para que serve o PyTranslator? PyTranslator é simultaneamente um editor e tradutor de texto em com interface gráfica que usa a

Elizeu Barbosa Abreu 1 May 12, 2022
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
Tracking Progress in Natural Language Processing

Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks.

Sebastian Ruder 21.2k Dec 30, 2022
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
Yuqing Xie 2 Feb 17, 2022
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新

bert4pytorch 2021年8月27更新: 感谢大家的star,最近有小伙伴反映了一些小的bug,我也注意到了,奈何这个月工作上实在太忙,更新不及时,大约会在9月中旬集中更新一个只需要pip一下就完全可用的版本,然后会新添加一些关键注释。 再增加对抗训练的内容,更新一个完整的finetune

muqiu 317 Dec 18, 2022
Machine learning classifiers to predict American Sign Language .

ASL-Classifiers American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United Stat

Tarek idrees 0 Feb 08, 2022