This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.

Overview

Improving Transformer Models by Reordering their Sublayers

This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers (video presentation here, summary here).

Our character-level model (and this repo) is based on the Adaptive Attention Span for Transformers model. In our paper we showed that by simply reordering that model's self-attention and feedforward sublayers, we could improve performance on the enwik8 benchmark (where we achieve 0.968 BPC on the test set).

The code here simply adds a way to reorder the sublayers of the Adaptive Span model, using the --architecture parameter.

If you use this code or results from our paper, please cite:

@inproceedings{press-etal-2020-improving,
    title = "Improving Transformer Models by Reordering their Sublayers",
    author = "Press, Ofir and Smith, Noah A. and Levy, Omer",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.270",
    doi = "10.18653/v1/2020.acl-main.270",
    pages = "2996--3005",
}

Requirements

You need CUDA 10 and PyTorch 1.2.0 to run this code. See this page for installation instructions. To replicate our experimental conditions eight V100 GPUs are needed.

Running experiments in the paper

The scripts for training the character-level models from the paper are located in the ./experiments/ directory. For example, to train the enwik8 model, run:

bash experiments/enwik8_large.sh

We used eight V100 GPUs, but if you'd like to run this model on GPUs with less memory you can increase the --batch-split (it splits batches into smaller pieces without changing the final result).

We obtained the following results in our experiments:

Experiment #params valid (bpc) test (bpc)
enwik8 Sandwich Transformer 209M 0.992 0.968
text8 Sandwich Transformer 209M 1.012 1.076

The --architecture parameter

A standard transformer with 3 layers (so 6 self-attention and feedforward sublayers) would use be trained using --architecture sfsfsf. That 6 sublayer model with a sandwiching coefficient of 1 would be --architecture s.sfsf.f and with a sandwiching coefficient of 2 would be --architecture s.s.sf.f.f. Make sure to also set the --nlayers parameter to be the length of the architecture string divided by 2.

License

The code is licensed under CC-BY-NC license. See the LICENSE file for more details.

Acknowledgements + More Information

This code is based on the code of the Adaptive Span model. We recommend reading the Adaptive Span README for further information on this codebase.

Train 🤗transformers with DeepSpeed: ZeRO-2, ZeRO-3

Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.

Junbum Lee 12 Oct 26, 2022
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb – Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Estimation of the CEFR complexity score of a given word, sentence or text.

NLP-Swedish … allows to estimate CEFR (Common European Framework of References) complexity score of a given word, sentence or text. CEFR scores come f

3 Apr 30, 2022
American Sign Language (ASL) to Text Converter

Signterpreter American Sign Language (ASL) to Text Converter Recommendations Although there is grayscale and gaussian blur, we recommend that you use

0 Feb 20, 2022
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
RecipeReduce: Simplified Recipe Processing for Lazy Programmers

RecipeReduce This repo will help you figure out the amount of ingredients to buy for a certain number of meals with selected recipes. RecipeReduce Get

Qibin Chen 9 Apr 22, 2022
A simple version of DeTR

DeTR-Lite A simple version of DeTR Before you enjoy this DeTR-Lite The purpose of this project is to allow you to learn the basic knowledge of DeTR. P

Jianhua Yang 11 Jun 13, 2022
The (extremely) naive sentiment classification function based on NBSVM trained on wisesight_sentiment

thai_sentiment The naive sentiment classification function based on NBSVM trained on wisesight_sentiment วิธีติดตั้ง pip install thai_sentiment==0.1.3

Charin 7 Dec 08, 2022
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Chung-Ming Chien 1k Dec 30, 2022
Implementation of Natural Language Code Search in the project CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT-Implementation In this repo we have replicated the paper CodeBERT: A Pre-Trained Model for Programming and Natural Languages. We are interest

Tanuj Sur 4 Jul 01, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Fortalice Solutions, LLC 78 Dec 12, 2022
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
Open Source Neural Machine Translation in PyTorch

OpenNMT-py: Open-Source Neural Machine Translation OpenNMT-py is the PyTorch version of the OpenNMT project, an open-source (MIT) neural machine trans

OpenNMT 5.8k Jan 04, 2023
ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension

ThinkTwice ThinkTwice is a retriever-reader architecture for solving long-text machine reading comprehension. It is based on the paper: ThinkTwice: A

Walle 4 Aug 06, 2021
Mysticbbs-rjam - rJAM splitscreen message reader for MysticBBS A46+

rJAM splitscreen message reader for MysticBBS A46+

Robbert Langezaal 4 Nov 22, 2022
Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

snoop2head 14 Nov 15, 2022