Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Overview

Neural Network Models for Joint POS Tagging and Dependency Parsing

jptdpv2

Implementations of joint models for POS tagging and dependency parsing, as described in my papers:

  1. Dat Quoc Nguyen and Karin Verspoor. 2018. An improved neural network model for joint POS tagging and dependency parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 81-91. [.bib] (jPTDP v2.0)
  2. Dat Quoc Nguyen, Mark Dras and Mark Johnson. 2017. A Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 134-142. [.bib] (jPTDP v1.0)

This github project currently supports jPTDP v2.0, while v1.0 can be found in the release section. Please cite paper [1] when jPTDP is used to produce published results or incorporated into other software. I would highly appreciate to have your bug reports, comments and suggestions about jPTDP. As a free open-source implementation, jPTDP is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

Installation

jPTDP requires the following software packages:

  • Python 2.7

  • DyNet v2.0

    $ virtualenv -p python2.7 .DyNet
    $ source .DyNet/bin/activate
    $ pip install cython numpy
    $ pip install dynet==2.0.3
    

Once you installed the prerequisite packages above, you can clone or download (and then unzip) jPTDP. Next sections show instructions to train a new joint model for POS tagging and dependency parsing, and then to utilize a pre-trained model.

NOTE: jPTDP is also ported to run with Python 3.4+ by Santiago Castro. Also note that pre-trained models I provide in the last section would not work with this ported version (see a discussion). Thus, you may want to retrain jPTDP if using this ported version.

Train a joint model

Suppose that SOURCE_DIR is simply used to denote the source code directory. Similar to files train.conllu and dev.conllu in folder SOURCE_DIR/sample or treebanks in the Universal Dependencies (UD) project, the training and development files are formatted following 10-column data format. For training, jPTDP will only use information from columns 1 (ID), 2 (FORM), 4 (Coarse-grained POS tags---UPOSTAG), 7 (HEAD) and 8 (DEPREL).

To train a joint model for POS tagging and dependency parsing, you perform:

SOURCE_DIR$ python jPTDP.py --dynet-seed 123456789 [--dynet-mem <int>] [--epochs <int>] [--lstmdims <int>] [--lstmlayers <int>] [--hidden <int>] [--wembedding <int>] [--cembedding <int>] [--pembedding <int>] [--prevectors <path-to-pre-trained-word-embedding-file>] [--model <String>] [--params <String>] --outdir <path-to-output-directory> --train <path-to-train-file>  --dev <path-to-dev-file>

where hyper-parameters in [] are optional:

  • --dynet-mem: Specify DyNet memory in MB.
  • --epochs: Specify number of training epochs. Default value is 30.
  • --lstmdims: Specify number of BiLSTM dimensions. Default value is 128.
  • --lstmlayers: Specify number of BiLSTM layers. Default value is 2.
  • --hidden: Specify size of MLP hidden layer. Default value is 100.
  • --wembedding: Specify size of word embeddings. Default value is 100.
  • --cembedding: Specify size of character embeddings. Default value is 50.
  • --pembedding: Specify size of POS tag embeddings. Default value is 100.
  • --prevectors: Specify path to the pre-trained word embedding file for initialization. Default value is "None" (i.e. word embeddings are randomly initialized).
  • --model: Specify a name for model parameters file. Default value is "model".
  • --params: Specify a name for model hyper-parameters file. Default value is "model.params".
  • --outdir: Specify path to directory where the trained model will be saved.
  • --train: Specify path to the training data file.
  • --dev: Specify path to the development data file.

For example:

SOURCE_DIR$ python jPTDP.py --dynet-seed 123456789 --dynet-mem 1000 --epochs 30 --lstmdims 128 --lstmlayers 2 --hidden 100 --wembedding 100 --cembedding 50 --pembedding 100  --model trialmodel --params trialmodel.params --outdir sample/ --train sample/train.conllu --dev sample/dev.conllu

will produce model files trialmodel and trialmodel.params in folder SOURCE_DIR/sample.

If you would like to use the fine-grained language-specific POS tags in the 5th column instead of the coarse-grained POS tags in the 4th column, you should use swapper.py in folder SOURCE_DIR/utils to swap contents in the 4th and 5th columns:

SOURCE_DIR$ python utils/swapper.py <path-to-train-(and-dev)-file>

For example:

SOURCE_DIR$ python utils/swapper.py sample/train.conllu
SOURCE_DIR$ python utils/swapper.py sample/dev.conllu

will generate two new files for training: train.conllu.ux2xu and dev.conllu.ux2xu in folder SOURCE_DIR/sample.

Utilize a pre-trained model

Assume that you are going to utilize a pre-trained model for annotating a corpus whose each line represents a tokenized/word-segmented sentence. You should use converter.py in folder SOURCE_DIR/utils to obtain a 10-column data format of this corpus:

SOURCE_DIR$ python utils/converter.py <file-path>

For example:

SOURCE_DIR$ python utils/converter.py sample/test

will generate in folder SOURCE_DIR/sample a file named test.conllu which can be used later as input to the pre-trained model.

To utilize a pre-trained model for POS tagging and dependency parsing, you perform:

SOURCE_DIR$ python jPTDP.py --predict --model <path-to-model-parameters-file> --params <path-to-model-hyper-parameters-file> --test <path-to-10-column-input-file> --outdir <path-to-output-directory> --output <String>
  • --model: Specify path to model parameters file.
  • --params: Specify path to model hyper-parameters file.
  • --test: Specify path to 10-column input file.
  • --outdir: Specify path to directory where output file will be saved.
  • --output: Specify name of the output file.

For example:

SOURCE_DIR$ python jPTDP.py --predict --model sample/trialmodel --params sample/trialmodel.params --test sample/test.conllu --outdir sample/ --output test.conllu.pred
SOURCE_DIR$ python jPTDP.py --predict --model sample/trialmodel --params sample/trialmodel.params --test sample/dev.conllu --outdir sample/ --output dev.conllu.pred

will produce output files test.conllu.pred and dev.conllu.pred in folder SOURCE_DIR/sample.

Pre-trained models

Pre-trained jPTDP v2.0 models, which were trained on English WSJ Penn treebank, GENIA and UD v2.2 treebanks, can be found at HERE. Results on test sets (as detailed in paper [1]) are as follows:

Treebank Model name POS UAS LAS
English WSJ Penn treebank model256 97.97 94.51 92.87
English WSJ Penn treebank model 97.88 94.25 92.58

model256 and model denote the pre-trained models which use 256- and 128-dimensional LSTM hidden states, respectively, i.e. model256 is more accurate but slower.

Treebank Code UPOS UAS LAS
UD_Afrikaans-AfriBooms af_afribooms 95.73 82.57 78.89
UD_Ancient_Greek-PROIEL grc_proiel 96.05 77.57 72.84
UD_Ancient_Greek-Perseus grc_perseus 88.95 65.09 58.35
UD_Arabic-PADT ar_padt 96.33 86.08 80.97
UD_Basque-BDT eu_bdt 93.62 79.86 75.07
UD_Bulgarian-BTB bg_btb 98.07 91.47 87.69
UD_Catalan-AnCora ca_ancora 98.46 90.78 88.40
UD_Chinese-GSD zh_gsd 93.26 82.50 77.51
UD_Croatian-SET hr_set 97.42 88.74 83.62
UD_Czech-CAC cs_cac 98.87 89.85 87.13
UD_Czech-FicTree cs_fictree 97.98 88.94 85.64
UD_Czech-PDT cs_pdt 98.74 89.64 87.04
UD_Czech-PUD cs_pud 96.71 87.62 82.28
UD_Danish-DDT da_ddt 96.18 82.17 78.88
UD_Dutch-Alpino nl_alpino 95.62 86.34 82.37
UD_Dutch-LassySmall nl_lassysmall 95.21 86.46 82.14
UD_English-EWT en_ewt 95.48 87.55 84.71
UD_English-GUM en_gum 94.10 84.88 80.45
UD_English-LinES en_lines 95.55 80.34 75.40
UD_English-PUD en_pud 95.25 87.49 84.25
UD_Estonian-EDT et_edt 96.87 85.45 82.13
UD_Finnish-FTB fi_ftb 94.53 86.10 82.45
UD_Finnish-PUD fi_pud 96.44 87.54 84.60
UD_Finnish-TDT fi_tdt 96.12 86.07 82.92
UD_French-GSD fr_gsd 97.11 89.45 86.43
UD_French-Sequoia fr_sequoia 97.92 89.71 87.43
UD_French-Spoken fr_spoken 94.25 79.80 73.45
UD_Galician-CTG gl_ctg 97.12 85.09 81.93
UD_Galician-TreeGal gl_treegal 93.66 77.71 71.63
UD_German-GSD de_gsd 94.07 81.45 76.68
UD_Gothic-PROIEL got_proiel 93.45 79.80 71.85
UD_Greek-GDT el_gdt 96.59 87.52 84.64
UD_Hebrew-HTB he_htb 96.24 87.65 82.64
UD_Hindi-HDTB hi_hdtb 96.94 93.25 89.83
UD_Hungarian-Szeged hu_szeged 92.07 76.18 69.75
UD_Indonesian-GSD id_gsd 93.29 84.64 77.71
UD_Irish-IDT ga_idt 89.74 75.72 65.78
UD_Italian-ISDT it_isdt 98.01 92.33 90.20
UD_Italian-PoSTWITA it_postwita 95.41 84.20 79.11
UD_Japanese-GSD ja_gsd 97.27 94.21 92.02
UD_Japanese-Modern ja_modern 70.53 66.88 49.51
UD_Korean-GSD ko_gsd 93.35 81.32 76.58
UD_Korean-Kaist ko_kaist 93.53 83.59 80.74
UD_Latin-ITTB la_ittb 98.12 82.99 79.96
UD_Latin-PROIEL la_proiel 95.54 74.95 69.76
UD_Latin-Perseus la_perseus 82.36 57.21 46.28
UD_Latvian-LVTB lv_lvtb 93.53 81.06 76.13
UD_North_Sami-Giella sme_giella 87.48 65.79 58.09
UD_Norwegian-Bokmaal no_bokmaal 97.73 89.83 87.57
UD_Norwegian-Nynorsk no_nynorsk 97.33 89.73 87.29
UD_Norwegian-NynorskLIA no_nynorsklia 85.22 64.14 54.31
UD_Old_Church_Slavonic-PROIEL cu_proiel 93.69 80.59 73.93
UD_Old_French-SRCMF fro_srcmf 95.12 86.65 81.15
UD_Persian-Seraji fa_seraji 96.66 88.07 84.07
UD_Polish-LFG pl_lfg 98.22 95.29 93.10
UD_Polish-SZ pl_sz 97.05 90.98 87.66
UD_Portuguese-Bosque pt_bosque 96.76 88.67 85.71
UD_Romanian-RRT ro_rrt 97.43 88.74 83.54
UD_Russian-SynTagRus ru_syntagrus 98.51 91.00 88.91
UD_Russian-Taiga ru_taiga 85.49 65.52 56.33
UD_Serbian-SET sr_set 97.40 89.32 85.03
UD_Slovak-SNK sk_snk 95.18 85.88 81.89
UD_Slovenian-SSJ sl_ssj 97.79 88.26 86.10
UD_Slovenian-SST sl_sst 89.50 66.14 58.13
UD_Spanish-AnCora es_ancora 98.57 90.30 87.98
UD_Swedish-LinES sv_lines 95.51 83.60 78.97
UD_Swedish-PUD sv_pud 92.10 79.53 74.53
UD_Swedish-Talbanken sv_talbanken 96.55 86.53 83.01
UD_Turkish-IMST tr_imst 92.93 70.53 62.55
UD_Ukrainian-IU uk_iu 95.24 83.47 79.38
UD_Urdu-UDTB ur_udtb 93.35 86.74 80.44
UD_Uyghur-UDT ug_udt 87.63 76.14 63.37
UD_Vietnamese-VTB vi_vtb 87.63 67.72 58.27
Comments
  • Low POS in WSJ

    Low POS in WSJ

    Hi , I tested on the WSJ dataset with model256 and only got accuracy about 95.5%. I would like to ask that how can i get the accuracy 97.97 of the paper. I used the parameters set in the code, no changes were made.

    opened by ava-YangL 3
  • learner.py Word dropout

    learner.py Word dropout

    Seems in lines 252-259 of learner.py, you still consider the character embeddings while the word is potentially dropped. Not sure if this makes sense.

    opened by TheElephantInTheRoom 2
  • Named Entity Recognition tool ?!

    Named Entity Recognition tool ?!

    Salutation Sir... that was a great job and a very powerful PoS tool I wanted to ask you if you developed a "named entity recognition" or as they name it "chunking" tool with this PoS tool. I need it in my experiments
    thanks in advance

    opened by Raki22 1
  •  Low UAS and LAS scores

    Low UAS and LAS scores

    I have tried using your parser to test with EWT English treebank, and surprisingly UAS and LAS scores are low, around 87.50 and 84.53. I have used conll2017 shared task pretrained word embeddings. Do you think this is normal or am I doing something wrong?

    opened by Eugen2525 1
  • trainer.update

    trainer.update

    The trainer.update here doesn't make sense.

    This was trainer.update_epoch() in the original code-base of bist-parser, but since the port from Dynet v1.1 to Dynet v2, the update_epoch function is deprecated. The use for calling update_epoch was to update the learning_rate. Which is not going to happen by calling trainer.update, as far as I know.

    opened by TheElephantInTheRoom 1
Releases(v1.0)
  • v1.0(Feb 28, 2018)

Owner
Dat Quoc Nguyen
Dat Quoc Nguyen
Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated

Create a semantic search engine with a neural network (i.e. BERT) whose knowledge base can be updated. This engine can later be used for downstream tasks in NLP such as Q&A, summarization, generation

Diego 1 Mar 20, 2022
open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

7 Nov 02, 2022
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 358 Dec 24, 2022
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
Tools and data for measuring the popularity & growth of various programming languages.

growth-data Tools and data for measuring the popularity & growth of various programming languages. Install the dependencies $ pip install -r requireme

3 Jan 06, 2022
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
Code for using and evaluating SpanBERT.

SpanBERT This repository contains code and models for the paper: SpanBERT: Improving Pre-training by Representing and Predicting Spans. If you prefer

Meta Research 798 Dec 30, 2022
Sapiens is a human antibody language model based on BERT.

Sapiens: Human antibody language model ____ _ / ___| __ _ _ __ (_) ___ _ __ ___ \___ \ / _` | '_ \| |/ _ \ '

Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc. 13 Nov 20, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Meta Research 711 Jan 08, 2023
Library for Russian imprecise rhymes generation

TOM RHYMER Library for Russian imprecise rhymes generation. Quick Start Generate rhymes by any given rhyme scheme (aabb, abab, aaccbb, etc ...): from

Alexey Karnachev 6 Oct 18, 2022
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
A CRM department in a local bank works on classify their lost customers with their past datas. So they want predict with these method that average loss balance and passive duration for future.

Rule-Based-Classification-in-a-Banking-Case. A CRM department in a local bank works on classify their lost customers with their past datas. So they wa

ÖMER YILDIZ 4 Mar 20, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Khalid Saifullah 37 Sep 05, 2022