A spaCy wrapper of OpenTapioca for named entity linking on Wikidata

Overview

spaCyOpenTapioca

A spaCy wrapper of OpenTapioca for named entity linking on Wikidata.

Table of contents

Installation

pip install spacyopentapioca

or

git clone https://github.com/UB-Mannheim/spacyopentapioca
cd spacyopentapioca/
pip install .

How to use

After installation the OpenTapioca pipeline can be used without any other pipelines:

import spacy
nlp = spacy.blank("en")
nlp.add_pipe('opentapioca')
doc = nlp("Christian Drosten works in Germany.")
for span in doc.ents:
    print((span.text, span.kb_id_, span.label_, span._.description, span._.score))
('Christian Drosten', 'Q1079331', 'PERSON', 'German virologist and university teacher', 3.6533377082098895)
('Germany', 'Q183', 'LOC', 'sovereign state in Central Europe', 2.1099332471902863)

The types and aliases are also available:

for span in doc.ents:
    print((span._.types, span._.aliases[0:5]))
({'Q43229': False, 'Q618123': False, 'Q5': True, 'P2427': False, 'P1566': False, 'P496': True}, ['كريستيان دروستين', 'Крістіан Дростен', 'Christian Heinrich Maria Drosten', 'کریستین دروستن', '크리스티안 드로스텐'])
({'Q43229': True, 'Q618123': True, 'Q5': False, 'P2427': False, 'P1566': True, 'P496': False}, ['IJalimani', 'R. F. A.', 'Alemania', '도이칠란트', 'Germaniya'])

The Wikidata QIDs are attached to tokens:

for token in doc:
    print((token.text, token.ent_kb_id_))
('Christian', 'Q1079331')
('Drosten', 'Q1079331')
('works', '')
('in', '')
('Germany', 'Q183')
('.', '')

The raw response of the OpenTapioca API can be accessed in the doc- and span-objects:

raw_annotations1 = doc._.annotations
raw_annotations2 = [span._.annotations for span in doc.ents]

The partial metadata for the response returned by the OpenTapioca API is

doc._.metadata

All span-extensions are:

span._.annotations
span._.description
span._.aliases
span._.rank
span._.score
span._.types
span._.label
span._.extra_aliases
span._.nb_sitelinks
span._.nb_statements

Note that spaCyOpenTapioca does a tiny processing of entities appearing in doc.ents. All entities returned by OpenTapioca can be found in doc.spans['all_entities_opentapioca'].

Local OpenTapioca

If OpenTapioca is deployed locally, specify the URL of the new OpenTapioca API in the config:

import spacy
nlp = spacy.blank("en")
nlp.add_pipe('opentapioca', config={"url": OpenTapiocaAPI})
doc = nlp("Christian Drosten works in Germany.")

Vizualization

NER vizualization in spaCy via displaCy cannot show yet the links to entities. This can be added into spaCy as proposed in issue 9129.

Comments
  • AttributeError: 'NoneType' object has no attribute 'text' when using nlp.pipe()

    AttributeError: 'NoneType' object has no attribute 'text' when using nlp.pipe()

    Hi, when I process multiple text documents as a batch, I have failure with the error message: AttributeError: 'NoneType' object has no attribute 'text'. However, processing each text document by itself produces no such error. Here is a easy to reproduce example:

    docs = ["""String of 126 characters. String of 126 characters. String of 126 characters. String of 126 characters. String of 126 characte""","""Any string which is 93 characters. Any string which is 93 characters. Any string which is 93 """]
    nlp = spacy.blank("en")
    nlp.add_pipe("opentapioca")
    for doc in nlp.pipe(docs):
        print(doc)
    

    Fulll stack trace below:

    AttributeError                            Traceback (most recent call last)
    <command-370658210397732> in <module>
          4 nlp = spacy.blank("en")
          5 nlp.add_pipe("opentapioca")
    ----> 6 for doc in nlp.pipe(docs):
          7     print(doc)
    
    /databricks/python/lib/python3.8/site-packages/spacy/language.py in pipe(self, texts, as_tuples, batch_size, disable, component_cfg, n_process)
       1570         else:
       1571             # if n_process == 1, no processes are forked.
    -> 1572             docs = (self._ensure_doc(text) for text in texts)
       1573             for pipe in pipes:
       1574                 docs = pipe(docs)
    
    /databricks/python/lib/python3.8/site-packages/spacy/util.py in _pipe(docs, proc, name, default_error_handler, kwargs)
       1597     if hasattr(proc, "pipe"):
       1598         yield from proc.pipe(docs, **kwargs)
    -> 1599     else:
       1600         # We added some args for pipe that __call__ doesn't expect.
       1601         kwargs = dict(kwargs)
    
    /databricks/python/lib/python3.8/site-packages/spacyopentapioca/entity_linker.py in pipe(self, stream, batch_size)
        117                     self.make_request, doc): doc for doc in docs}
        118                 for doc, future in zip(docs, concurrent.futures.as_completed(future_to_url)):
    --> 119                     yield self.process_single_doc_after_call(doc, future.result())
    
    /databricks/python/lib/python3.8/site-packages/spacyopentapioca/entity_linker.py in process_single_doc_after_call(self, doc, r)
         66                                      alignment_mode='expand')
         67                 log.warning('The OpenTapioca-entity "%s" %s does not fit the span "%s" %s in spaCy. EXPANDED!',
    ---> 68                             ent['tags'][0]['label'][0], (start, end), span.text, (span.start_char, span.end_char))
         69             span._.annotations = ent
         70             span._.description = ent['tags'][0]['desc']
    
    AttributeError: 'NoneType' object has no attribute 'text'
    

    I don't know what about the lengths of the strings causes an issue, but they do seem to matter in some way. Adding or removing a couple characters from either string can resolve the issue.

    opened by coltonpeltier-db 6
  • Add methods to highlights

    Add methods to highlights

    In the same way by clicking a NER highlighting leads to a web side it would perhaps be possible to extend this functionality and pass a method to be run when clicking the highlighted NER.

    opened by joseberlines 4
  • Add CodeQL workflow for GitHub code scanning

    Add CodeQL workflow for GitHub code scanning

    Hi UB-Mannheim/spacyopentapioca!

    This is a one-off automatically generated pull request from LGTM.com :robot:. You might have heard that we’ve integrated LGTM’s underlying CodeQL analysis engine natively into GitHub. The result is GitHub code scanning!

    With LGTM fully integrated into code scanning, we are focused on improving CodeQL within the native GitHub code scanning experience. In order to take advantage of current and future improvements to our analysis capabilities, we suggest you enable code scanning on your repository. Please take a look at our blog post for more information.

    This pull request enables code scanning by adding an auto-generated codeql.yml workflow file for GitHub Actions to your repository — take a look! We tested it before opening this pull request, so all should be working :heavy_check_mark:. In fact, you might already have seen some alerts appear on this pull request!

    Where needed and if possible, we’ve adjusted the configuration to the needs of your particular repository. But of course, you should feel free to tweak it further! Check this page for detailed documentation.

    Questions? Check out the FAQ below!

    FAQ

    Click here to expand the FAQ section

    How often will the code scanning analysis run?

    By default, code scanning will trigger a scan with the CodeQL engine on the following events:

    • On every pull request — to flag up potential security problems for you to investigate before merging a PR.
    • On every push to your default branch and other protected branches — this keeps the analysis results on your repository’s Security tab up to date.
    • Once a week at a fixed time — to make sure you benefit from the latest updated security analysis even when no code was committed or PRs were opened.

    What will this cost?

    Nothing! The CodeQL engine will run inside GitHub Actions, making use of your unlimited free compute minutes for public repositories.

    What types of problems does CodeQL find?

    The CodeQL engine that powers GitHub code scanning is the exact same engine that powers LGTM.com. The exact set of rules has been tweaked slightly, but you should see almost exactly the same types of alerts as you were used to on LGTM.com: we’ve enabled the security-and-quality query suite for you.

    How do I upgrade my CodeQL engine?

    No need! New versions of the CodeQL analysis are constantly deployed on GitHub.com; your repository will automatically benefit from the most recently released version.

    The analysis doesn’t seem to be working

    If you get an error in GitHub Actions that indicates that CodeQL wasn’t able to analyze your code, please follow the instructions here to debug the analysis.

    How do I disable LGTM.com?

    If you have LGTM’s automatic pull request analysis enabled, then you can follow these steps to disable the LGTM pull request analysis. You don’t actually need to remove your repository from LGTM.com; it will automatically be removed in the next few months as part of the deprecation of LGTM.com (more info here).

    Which source code hosting platforms does code scanning support?

    GitHub code scanning is deeply integrated within GitHub itself. If you’d like to scan source code that is hosted elsewhere, we suggest that you create a mirror of that code on GitHub.

    How do I know this PR is legitimate?

    This PR is filed by the official LGTM.com GitHub App, in line with the deprecation timeline that was announced on the official GitHub Blog. The proposed GitHub Action workflow uses the official open source GitHub CodeQL Action. If you have any other questions or concerns, please join the discussion here in the official GitHub community!

    I have another question / how do I get in touch?

    Please join the discussion here to ask further questions and send us suggestions!

    opened by lgtm-com[bot] 1
  • 'ent_kb_id' referenced before assignment

    'ent_kb_id' referenced before assignment

    Hello, while trying this example : nlp("M. Knajdek"), An error occurs in the entity_linker.py file UnboundLocalError: local variable 'ent_kb_id' referenced before assignment on line 67 in the file. This is due to the . separator.

    opened by TheNizzo 1
  • Added logging & Fixed Reference Error

    Added logging & Fixed Reference Error

    Added logger to allow user to suppress logs coming from spacyopentapioca.

    Fixed thelocal variable 'etype' referenced before assignment error at line 65.

    opened by jordanparker6 1
Releases(v.0.1.6)
Owner
Universitätsbibliothek Mannheim
Mannheim University Library
Universitätsbibliothek Mannheim
Resources for "Natural Language Processing" Coursera course.

Natural Language Processing course resources This github contains practical assignments for Natural Language Processing course by Higher School of Eco

Advanced Machine Learning specialisation by HSE 1.1k Jan 01, 2023
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

David McClosky 64 May 08, 2022
Python3 to Crystal Translation using Python AST Walker

py2cr.py A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.

66 Jul 25, 2022
Ongoing research training transformer language models at scale, including: BERT & GPT-2

Megatron (1 and 2) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA.

NVIDIA Corporation 3.5k Dec 30, 2022
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann

Fan Bai 8 Dec 17, 2021
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating

LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)

Immanuvel Prathap S 1 Jan 16, 2022
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
Let Xiao Ai speakers control third-party devices

A stupid way to extend miot/xiaoai. Demo for Panasonic Bath Bully FV-RB20VL1 逆向 Panasonic Smart China,获得控制浴霸的请求信息(HTTP 请求),详见 apps/panasonic.py; 2. 通过

bin 14 Jul 07, 2022
Lyrics generation with GPT2-based Transformer

HuggingArtists - Train a model to generate lyrics Create AI-Artist in just 5 minutes! 🚀 Run the demo notebook to train 🚀 Run the GUI demo to test Di

Aleksey Korshuk 65 Dec 19, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library.

GI-Pi Control the classic General Instrument SP0256-AL2 speech chip and AY-3-8910 sound generator with a Raspberry Pi and this Python library. The SP0

Nick Bild 8 Dec 15, 2021
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022
An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hundreds of billions of parameters or larger.

GPT-NeoX An implementation of model parallel GPT-3-like models on GPUs, based on the DeepSpeed library. Designed to be able to train models in the hun

EleutherAI 3.1k Jan 08, 2023
DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task。涵盖68个领域、共计916万词的专业词典知识库,可用于文本分类、知识增强、领域词汇库扩充等自然语言处理应用。

liuhuanyong 357 Dec 24, 2022
Code associated with the Don't Stop Pretraining ACL 2020 paper

dont-stop-pretraining Code associated with the Don't Stop Pretraining ACL 2020 paper Citation @inproceedings{dontstoppretraining2020, author = {Suchi

AI2 449 Jan 04, 2023
Code for the paper PermuteFormer

PermuteFormer This repo includes codes for the paper PermuteFormer: Efficient Relative Position Encoding for Long Sequences. Directory long_range_aren

Peng Chen 42 Mar 16, 2022