Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

Related tags

Text Data & NLPERNIE
Overview

ERNIE

Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities"

Reqirements:

  • Pytorch>=0.4.1
  • Python3
  • tqdm
  • boto3
  • requests
  • apex (If you want to use fp16, you should make sure the commit is 79ad5a88e91434312b43b4a89d66226be5f2cc98.)

Prepare Pre-train Data

Run the following command to create training instances.

  # Download Wikidump
  wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
  # Download anchor2id
  wget -c https://cloud.tsinghua.edu.cn/f/1c956ed796cb4d788646/?dl=1 -O anchor2id.txt
  # WikiExtractor
  python3 pretrain_data/WikiExtractor.py enwiki-latest-pages-articles.xml.bz2 -o pretrain_data/output -l --min_text_length 100 --filter_disambig_pages -it abbr,b,big --processes 4
  # Modify anchors with 4 processes
  python3 pretrain_data/extract.py 4
  # Preprocess with 4 processes
  python3 pretrain_data/create_ids.py 4
  # create instances
  python3 pretrain_data/create_insts.py 4
  # merge
  python3 code/merge.py

If you want to get anchor2id by yourself, run the following code(this will take about half a day) after python3 pretrain_data/extract.py 4

  # extract anchors
  python3 pretrain_data/utils.py get_anchors
  # query Mediawiki api using anchor link to get wikibase item id. For more details, see https://en.wikipedia.org/w/api.php?action=help.
  python3 pretrain_data/create_anchors.py 256 
  # aggregate anchors 
  python3 pretrain_data/utils.py agg_anchors

Run the following command to pretrain:

  python3 code/run_pretrain.py --do_train --data_dir pretrain_data/merge --bert_model ernie_base --output_dir pretrain_out/ --task_name pretrain --fp16 --max_seq_length 256

We use 8 NVIDIA-2080Ti to pre-train our model and there are 32 instances in each GPU. It takes nearly one day to finish the training (1 epoch is enough).

Pre-trained Model

Download pre-trained knowledge embedding from Google Drive/Tsinghua Cloud and extract it.

tar -xvzf kg_embed.tar.gz

Download pre-trained ERNIE from Google Drive/Tsinghua Cloud and extract it.

tar -xvzf ernie_base.tar.gz

Note that the extraction may be not completed in Windows.

Fine-tune

As most datasets except FewRel don't have entity annotations, we use TAGME to extract the entity mentions in the sentences and link them to their corresponding entitoes in KGs. We provide the annotated datasets Google Drive/Tsinghua Cloud.

tar -xvzf data.tar.gz

In the root directory of the project, run the following codes to fine-tune ERNIE on different datasets.

FewRel:

python3 code/run_fewrel.py   --do_train   --do_lower_case   --data_dir data/fewrel/   --ernie_model ernie_base   --max_seq_length 256   --train_batch_size 32   --learning_rate 2e-5   --num_train_epochs 10   --output_dir output_fewrel   --fp16   --loss_scale 128
# evaluate
python3 code/eval_fewrel.py   --do_eval   --do_lower_case   --data_dir data/fewrel/   --ernie_model ernie_base   --max_seq_length 256   --train_batch_size 32   --learning_rate 2e-5   --num_train_epochs 10   --output_dir output_fewrel   --fp16   --loss_scale 128

TACRED:

python3 code/run_tacred.py   --do_train   --do_lower_case   --data_dir data/tacred   --ernie_model ernie_base   --max_seq_length 256   --train_batch_size 32   --learning_rate 2e-5   --num_train_epochs 4.0   --output_dir output_tacred   --fp16   --loss_scale 128 --threshold 0.4
# evaluate
python3 code/eval_tacred.py   --do_eval   --do_lower_case   --data_dir data/tacred   --ernie_model ernie_base   --max_seq_length 256   --train_batch_size 32   --learning_rate 2e-5   --num_train_epochs 4.0   --output_dir output_tacred   --fp16   --loss_scale 128 --threshold 0.4

FIGER:

python3 code/run_typing.py    --do_train   --do_lower_case   --data_dir data/FIGER   --ernie_model ernie_base   --max_seq_length 256   --train_batch_size 2048   --learning_rate 2e-5   --num_train_epochs 3.0   --output_dir output_figer  --gradient_accumulation_steps 32 --threshold 0.3 --fp16 --loss_scale 128 --warmup_proportion 0.2
# evaluate
python3 code/eval_figer.py    --do_eval   --do_lower_case   --data_dir data/FIGER   --ernie_model ernie_base   --max_seq_length 256   --train_batch_size 2048   --learning_rate 2e-5   --num_train_epochs 3.0   --output_dir output_figer  --gradient_accumulation_steps 32 --threshold 0.3 --fp16 --loss_scale 128 --warmup_proportion 0.2

OpenEntity:

python3 code/run_typing.py    --do_train   --do_lower_case   --data_dir data/OpenEntity   --ernie_model ernie_base   --max_seq_length 128   --train_batch_size 16   --learning_rate 2e-5   --num_train_epochs 10.0   --output_dir output_open --threshold 0.3 --fp16 --loss_scale 128
# evaluate
python3 code/eval_typing.py   --do_eval   --do_lower_case   --data_dir data/OpenEntity   --ernie_model ernie_base   --max_seq_length 128   --train_batch_size 16   --learning_rate 2e-5   --num_train_epochs 10.0   --output_dir output_open --threshold 0.3 --fp16 --loss_scale 128

Some code is modified from the pytorch-pretrained-BERT. You can find the explanation of most parameters in pytorch-pretrained-BERT.

As the annotations given by TAGME have confidence score, we use --threshlod to set the lowest confidence score and choose the annotations whose scores are higher than --threshold. In this experiment, the value is usually 0.3 or 0.4.

The script for the evaluation of relation classification just gives the accuracy score. For the macro/micro metrics, you should use code/score.py which is from tacred repo.

python3 code/score.py gold_file pred_file

You can find gold_file and pred_file on each checkpoint in the output folder (--output_dir).

New Tasks:

If you want to use ERNIE in new tasks, you should follow these steps:

  • Use an entity-linking tool like TAGME to extract the entities in the text
  • Look for the Wikidata ID of the extracted entities
  • Take the text and entities sequence as input data

Here is a quick-start example (code/example.py) using ERNIE for Masked Language Model. We show how to annotate the given sentence with TAGME and build the input data for ERNIE. Note that it will take some time (around 5 mins) to load the model.

# If you haven't installed tagme
pip install tagme
# Run example
python3 code/example.py

Cite

If you use the code, please cite this paper:

@inproceedings{zhang2019ernie,
  title={{ERNIE}: Enhanced Language Representation with Informative Entities},
  author={Zhang, Zhengyan and Han, Xu and Liu, Zhiyuan and Jiang, Xin and Sun, Maosong and Liu, Qun},
  booktitle={Proceedings of ACL 2019},
  year={2019}
}
Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
A CRM department in a local bank works on classify their lost customers with their past datas. So they want predict with these method that average loss balance and passive duration for future.

Rule-Based-Classification-in-a-Banking-Case. A CRM department in a local bank works on classify their lost customers with their past datas. So they wa

ÖMER YILDIZ 4 Mar 20, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Phil Wang 5k Jan 02, 2023
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022
Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP)

Practical Natural Language Processing Tools for Humans is build on the top of Senna Natural Language Processing (NLP) predictions: part-of-speech (POS) tags, chunking (CHK), name entity recognition (

jawahar 20 Apr 30, 2022
CJK computer science terms comparison / 中日韓電腦科學術語對照 / 日中韓のコンピュータ科学の用語対照 / 한·중·일 전산학 용어 대조

CJK computer science terms comparison This repository contains the source code of the website. You can see the website from the following link: Englis

Hong Minhee (洪 民憙) 88 Dec 23, 2022
This is a project built for FALLABOUT2021 event under SRMMIC, This project deals with NLP poetry generation.

FALLABOUT-SRMMIC 21 POETRY-GENERATION HINGLISH DESCRIPTION We have developed a NLP(natural language processing) model which automatically generates a

7 Sep 28, 2021
Code for "Finetuning Pretrained Transformers into Variational Autoencoders"

transformers-into-vaes Code for Finetuning Pretrained Transformers into Variational Autoencoders (our submission to NLP Insights Workshop 2021). Gathe

Seongmin Park 22 Nov 26, 2022
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

Awni Hannun 647 Dec 25, 2022
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
Chinese NewsTitle Generation Project by GPT2.带有超级详细注释的中文GPT2新闻标题生成项目。

GPT2-NewsTitle 带有超详细注释的GPT2新闻标题生成项目 UpDate 01.02.2021 从网上收集数据,将清华新闻数据、搜狗新闻数据等新闻数据集,以及开源的一些摘要数据进行整理清洗,构建一个较完善的中文摘要数据集。 数据集清洗时,仅进行了简单地规则清洗。

logCong 785 Dec 29, 2022
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper

Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We

14 Mar 25, 2022
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022
QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023