Random Directed Acyclic Graph Generator

Overview

DAG_Generator

Random Directed Acyclic Graph Generator

verison1.0

简介

工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权的有向边$E_{ij}$表示。每个有向边$E_{ij}$表示$T_i$是$T_j$的父任务,$T_j$只能在其所有父任务完成后执行。为了方便操作和展示,一般在所有任务之前设立一个Start虚拟节点,作为所有没有父任务节点的父节点;同理,在所有任务之后设立一个Exit虚拟节点,作为所有没有子任务节点的子节点,这两个虚拟节点都没有计算资源需求。

此程序用于随机生成有向无环图(DAG)。本来的想法是按照文献[1]的方法来生成DAG,但是原文没有给出代码,难以实现,所以就仿照文章的设定来生成DAG。

确定表示一个DAG需要三个数据,分别是是节点连接信息,各节点的父节点数,各节点的子节点数。由这三个元素可以确定一个独立的DAG。例如一个10个节点的DAG:

Edges: [(1, 5), (1, 6), (2, 4), (2, 6), (3, 6), (4, 7), (4, 9), (5, 9), (5, 7), (6, 7), ('Start', 1), ('Start', 2), ('Start', 3), ('Start', 8), ('Start', 10), (7, 'Exit'), (8, 'Exit'), (9, 'Exit'), (10, 'Exit')]

In_degree: [1, 1, 1, 1, 1, 3, 3, 1, 2, 1] #不包括虚拟节点

out_degree: [2, 2, 1, 2, 2, 1, 1, 1, 1, 1] #不包括虚拟节点

DAG

参数设定
set_dag_size = [20,30,40,50,60,70,80,90]             #random number of DAG  nodes       
set_max_out = [1,2,3,4,5]                            #max out_degree of one node
set_alpha = [0.5,1.0,1.5]                            #DAG shape
set_beta = [0.0,0.5,1.0,2.0]                         #DAG regularity
  1. set_dag_size : 设定的DAG任务大小,有[20,30,40,50,60,70,80,90],默认为20。
  2. set_max_out: 设定的一个节点最大出度,有[1,2,3,4,5],默认为2。
  3. set_alpha : 设定DAG控制形状的参数,有[0.5,1.0,1.5],默认为1.0。
  4. set_beta :设定DAG每层宽度的规则度参数,有[0.0,0.5,1.0,2.0] ,默认为1.0。

DAG的层数(深度)被设置为$\sqrt{set_dag_size}/set_alpha$, $\alpha$控制着DAG的Fat,$\alpha$越小,DAG越瘦长,$\alpha$越大,DAG越肥密。

DAGS

每层的宽度被随机设置为均值为$set_dag_size/length$,标准差为$\beta$的正态分布。$\beta$越大,DAG越不规则。

绘制

使用networkx库绘制DAG图。

def plot_DAG(edges,postion):
    g1 = nx.DiGraph()
    g1.add_edges_from(edges)
    nx.draw_networkx(g1, arrows=True, pos=postion)
    plt.savefig("DAG.png", format="PNG")
    return plt.clf

n = 30,max_out = 3, $\alpha$ = 1, $\beta$ = 1.0

DAG

n = 30,max_out = 3, $\alpha$ = 0.5, $\beta$ = 1.0

DAG

n = 30,max_out = 3, $\alpha$ = 1.5, $\beta$ = 1.0

DAG

代码
import random,math,argparse
import numpy as np
from numpy.random.mtrand import sample
from matplotlib import pyplot as plt
import networkx as nx

parser = argparse.ArgumentParser()
parser.add_argument('--mode', default='default', type=str)#parameters setting
parser.add_argument('--n', default=10, type=int)          #number of DAG  nodes
parser.add_argument('--max_out', default=2, type=float)   #max out_degree of one node
parser.add_argument('--alpha',default=1,type=float)       #shape 
parser.add_argument('--beta',default=1.0,type=float)      #regularity
args = parser.parse_args()

set_dag_size = [20,30,40,50,60,70,80,90]             #random number of DAG  nodes       
set_max_out = [1,2,3,4,5]                              #max out_degree of one node
set_alpha = [0.5,1.0,2.0]                            #DAG shape
set_beta = [0.0,0.5,1.0,2.0]                         #DAG regularity

def DAGs_generate(mode = 'default',n = 10,max_out = 2,alpha = 1,beta = 1.0):
    ##############################################initialize###########################################
    args.mode = mode
    if args.mode != 'default':
        args.n = random.sample(set_dag_size,1)[0]
        args.max_out = random.sample(set_max_out,1)[0]
        args.alpha = random.sample(set_alpha,1)[0]
        args.beta = random.sample(set_alpha,1)[0]
    else: 
        args.n = n
        args.max_out = max_out
        args.alpha = alpha
        args.beta = beta

    length = math.floor(math.sqrt(args.n)/args.alpha)
    mean_value = args.n/length
    random_num = np.random.normal(loc = mean_value, scale = args.beta,  size = (length,1))    
    ###############################################division############################################
    position = {'Start':(0,4),'Exit':(10,4)}
    generate_num = 0
    dag_num = 1
    dag_list = [] 
    for i in range(len(random_num)):
        dag_list.append([]) 
        for j in range(math.ceil(random_num[i])):
            dag_list[i].append(j)
        generate_num += math.ceil(random_num[i])

    if generate_num != args.n:
        if generate_num<args.n:
            for i in range(args.n-generate_num):
                index = random.randrange(0,length,1)
                dag_list[index].append(len(dag_list[index]))
        if generate_num>args.n:
            i = 0
            while i < generate_num-args.n:
                index = random.randrange(0,length,1)
                if len(dag_list[index])==1:
                    i = i-1 if i!=0 else 0
                else:
                    del dag_list[index][-1]
                i += 1

    dag_list_update = []
    pos = 1
    max_pos = 0
    for i in range(length):
        dag_list_update.append(list(range(dag_num,dag_num+len(dag_list[i]))))
        dag_num += len(dag_list_update[i])
        pos = 1
        for j in dag_list_update[i]:
            position[j] = (3*(i+1),pos)
            pos += 5
        max_pos = pos if pos > max_pos else max_pos
        position['Start']=(0,max_pos/2)
        position['Exit']=(3*(length+1),max_pos/2)

    ############################################link###################################################
    into_degree = [0]*args.n            
    out_degree = [0]*args.n             
    edges = []                          
    pred = 0

    for i in range(length-1):
        sample_list = list(range(len(dag_list_update[i+1])))
        for j in range(len(dag_list_update[i])):
            od = random.randrange(1,args.max_out+1,1)
            od = len(dag_list_update[i+1]) if len(dag_list_update[i+1])<od else od
            bridge = random.sample(sample_list,od)
            for k in bridge:
                edges.append((dag_list_update[i][j],dag_list_update[i+1][k]))
                into_degree[pred+len(dag_list_update[i])+k]+=1
                out_degree[pred+j]+=1 
        pred += len(dag_list_update[i])


    ######################################create start node and exit node################################
    for node,id in enumerate(into_degree):#给所有没有入边的节点添加入口节点作父亲
        if id ==0:
            edges.append(('Start',node+1))
            into_degree[node]+=1

    for node,od in enumerate(out_degree):#给所有没有出边的节点添加出口节点作儿子
        if od ==0:
            edges.append((node+1,'Exit'))
            out_degree[node]+=1

    #############################################plot##################################################
    return edges,into_degree,out_degree,position

参考

[1] [List Scheduling Algorithm for Heterogeneous Systems by an Optimistic Cost Table](https://ieeexplore.ieee.org/abstract/document/6471969/)

[2] Building DAGs / Directed Acyclic Graphs with Python

[3] DAG Dependencies

[4] Networkx Lirbrary

[5] Python生成依赖性应用的DAG(有向无环图)拓扑

Owner
Livion
無限進步 Email: [email protected] Wechat: Livion2018
Livion
A Telegram bot to add notes to Flomo.

flomo bot 使用 Telegram 机器人发送笔记到你的 Flomo. 你需要有一台可访问 Telegram 的服务器。 Steps @BotFather 新建机器人,获取 token Flomo 官网获取 API,链接 https://flomoapp.com/mine?source=in

Zhen 44 Dec 30, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
A design of MIDI language for music generation task, specifically for Natural Language Processing (NLP) models.

MIDI Language Introduction Reference Paper: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions: code This

Robert Bogan Kang 3 May 25, 2022
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

44 Jan 06, 2023
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
Voice Assistant inspired by Google Assistant, Cortana, Alexa, Siri, ...

author: @shival_gupta VoiceAI This program is an example of a simple virtual assitant It will listen to you and do accordingly It will begin with wish

Shival Gupta 1 Jan 06, 2022
Outreachy TFX custom component project

Schema Curation Custom Component Outreachy TFX custom component project This repo contains the code for Schema Curation Custom Component made as a par

Robert Crowe 5 Jul 16, 2021
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Expediting Vision Transformers via Token Reorganizations This repository contain

Youwei Liang 101 Dec 26, 2022
Russian words synonyms and antonyms

ru_synonyms Russian words synonyms and antonyms. Install pip install git+https://github.com/ahmados/rusynonyms.git Usage from ru_synonyms import Anto

sumekenov 7 Dec 14, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
Unsupervised Abstract Reasoning for Raven’s Problem Matrices

Unsupervised Abstract Reasoning for Raven’s Problem Matrices This code is the implementation of our TIP paper. This is the first unsupervised abstract

Tao Zhuo 9 Dec 17, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 68 Jan 06, 2023
Unlimited Call - Text Bombing Tool

FastBomber Unlimited Call - Text Bombing Tool Installation On Termux

Aryan 6 Nov 10, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
This is a NLP based project to extract effective date of the contract from their text files.

Date-Extraction-from-Contracts This is a NLP based project to extract effective date of the contract from their text files. Problem statement This is

Sambhav Garg 1 Jan 26, 2022
A programming language with logic of Python, and syntax of all languages.

Pytov The idea was to take all well known syntaxes, and combine them into one programming language with many posabilities. Installation Install using

Yuval Rosen 14 Dec 07, 2022
Text to speech for Vietnamese, ez to use, ez to update

Chào mọi người, đây là dự án mở nhằm giúp việc đọc được trở nên dễ dàng hơn. Rất cảm ơn đội ngũ Zalo đã cung cấp hạ tầng để mình có thể tạo ra app này

Trần Cao Minh Bách 32 Jul 29, 2022
Ray-based parallel data preprocessing for NLP and ML.

Wrangl Ray-based parallel data preprocessing for NLP and ML. pip install wrangl # for latest pip install git+https://github.com/vzhong/wrangl See exa

Victor Zhong 33 Dec 27, 2022