结巴中文分词

Related tags

Text Data & NLPjieba
Overview

jieba

“结巴”中文分词:做最好的 Python 中文分词组件

"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.

  • Scroll down for English documentation.

特点

  • 支持四种分词模式:
    • 精确模式,试图将句子最精确地切开,适合文本分析;
    • 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
    • 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
    • paddle模式,利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。paddle模式使用需安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。目前paddle模式支持jieba v0.40及以上版本。jieba v0.40以下版本,请升级jieba,pip install jieba --upgradePaddlePaddle官网
  • 支持繁体分词
  • 支持自定义词典
  • MIT 授权协议

安装说明

代码对 Python 2/3 均兼容

  • 全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba
  • 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install
  • 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录
  • 通过 import jieba 来引用
  • 如果需要使用paddle模式下的分词和词性标注功能,请先安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1

算法

  • 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
  • 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
  • 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法

主要功能

  1. 分词

  • jieba.cut 方法接受四个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型;use_paddle 参数用来控制是否使用paddle模式下的分词模式,paddle模式采用延迟加载方式,通过enable_paddle接口安装paddlepaddle-tiny,并且import相关代码;
  • jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
  • 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
  • jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
  • jieba.lcut 以及 jieba.lcut_for_search 直接返回 list
  • jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。

代码示例

# encoding=utf-8
import jieba

jieba.enable_paddle()# 启动paddle模式。 0.40版之后开始支持,早期版本不支持
strs=["我来到北京清华大学","乒乓球拍卖完了","中国科学技术大学"]
for str in strs:
    seg_list = jieba.cut(str,use_paddle=True) # 使用paddle模式
    print("Paddle Mode: " + '/'.join(list(seg_list)))

seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list))  # 全模式

seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list))  # 精确模式

seg_list = jieba.cut("他来到了网易杭研大厦")  # 默认是精确模式
print(", ".join(seg_list))

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式
print(", ".join(seg_list))

输出:

【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学

【精确模式】: 我/ 来到/ 北京/ 清华大学

【新词识别】:他, 来到, 了, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)

【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
  1. 添加自定义词典

载入词典

  • 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
  • 用法: jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
  • 词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。
  • 词频省略时使用自动计算的能保证分出该词的词频。

例如:

创新办 3 i
云计算 5
凱特琳 nz
台中

调整词典

  • 使用 add_word(word, freq=None, tag=None)del_word(word) 可在程序中动态修改词典。

  • 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。

  • 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。

代码示例:

>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中将/出错/。
>>> jieba.suggest_freq(('', ''), True)
494
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中/将/出错/。
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台/中/」/正确/应该/不会/被/切开
>>> jieba.suggest_freq('台中', True)
69
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台中/」/正确/应该/不会/被/切开
  1. 关键词提取

基于 TF-IDF 算法的关键词抽取

import jieba.analyse

  • jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
    • sentence 为待提取的文本
    • topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
    • withWeight 为是否一并返回关键词权重值,默认值为 False
    • allowPOS 仅包括指定词性的词,默认值为空,即不筛选
  • jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件

代码示例 (关键词提取)

https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py

关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径

关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径

关键词一并返回关键词权重值示例

基于 TextRank 算法的关键词抽取

  • jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) 直接使用,接口相同,注意默认过滤词性。
  • jieba.analyse.TextRank() 新建自定义 TextRank 实例

算法论文: TextRank: Bringing Order into Texts

基本思想:

  1. 将待抽取关键词的文本进行分词
  2. 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图
  3. 计算图中节点的PageRank,注意是无向带权图

使用示例:

test/demo.py

  1. 词性标注

  • jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。
  • 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。
  • 除了jieba默认分词模式,提供paddle模式下的词性标注功能。paddle模式采用延迟加载方式,通过enable_paddle()安装paddlepaddle-tiny,并且import相关代码;
  • 用法示例
>>> import jieba
>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门") #jieba默认模式
>>> jieba.enable_paddle() #启动paddle模式。 0.40版之后开始支持,早期版本不支持
>>> words = pseg.cut("我爱北京天安门",use_paddle=True) #paddle模式
>>> for word, flag in words:
...    print('%s %s' % (word, flag))
...
我 r
爱 v
北京 ns
天安门 ns

paddle模式词性标注对应表如下:

paddle模式词性和专名类别标签集合如下表,其中词性标签 24 个(小写字母),专名类别标签 4 个(大写字母)。

标签 含义 标签 含义 标签 含义 标签 含义
n 普通名词 f 方位名词 s 处所名词 t 时间
nr 人名 ns 地名 nt 机构名 nw 作品名
nz 其他专名 v 普通动词 vd 动副词 vn 名动词
a 形容词 ad 副形词 an 名形词 d 副词
m 数量词 q 量词 r 代词 p 介词
c 连词 u 助词 xc 其他虚词 w 标点符号
PER 人名 LOC 地名 ORG 机构名 TIME 时间
  1. 并行分词

  • 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升

  • 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows

  • 用法:

    • jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
    • jieba.disable_parallel() # 关闭并行分词模式
  • 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py

  • 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。

  • 注意:并行分词仅支持默认分词器 jieba.dtjieba.posseg.dt

  1. Tokenize:返回词语在原文的起止位置

  • 注意,输入参数只接受 unicode
  • 默认模式
result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:
    print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限公司            start: 6                end:10

  • 搜索模式
result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')
for tk in result:
    print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限                start: 6                end:8
word 公司                start: 8                end:10
word 有限公司            start: 6                end:10
  1. ChineseAnalyzer for Whoosh 搜索引擎

  1. 命令行分词

使用示例:python -m jieba news.txt > cut_result.txt

命令行选项(翻译):

使用: python -m jieba [options] filename

结巴命令行界面。

固定参数:
  filename              输入文件

可选参数:
  -h, --help            显示此帮助信息并退出
  -d [DELIM], --delimiter [DELIM]
                        使用 DELIM 分隔词语,而不是用默认的' / '。
                        若不指定 DELIM,则使用一个空格分隔。
  -p [DELIM], --pos [DELIM]
                        启用词性标注;如果指定 DELIM,词语和词性之间
                        用它分隔,否则用 _ 分隔
  -D DICT, --dict DICT  使用 DICT 代替默认词典
  -u USER_DICT, --user-dict USER_DICT
                        使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用
  -a, --cut-all         全模式分词(不支持词性标注)
  -n, --no-hmm          不使用隐含马尔可夫模型
  -q, --quiet           不输出载入信息到 STDERR
  -V, --version         显示版本信息并退出

如果没有指定文件名,则使用标准输入。

--help 选项输出:

$> python -m jieba --help
Jieba command line interface.

positional arguments:
  filename              input file

optional arguments:
  -h, --help            show this help message and exit
  -d [DELIM], --delimiter [DELIM]
                        use DELIM instead of ' / ' for word delimiter; or a
                        space if it is used without DELIM
  -p [DELIM], --pos [DELIM]
                        enable POS tagging; if DELIM is specified, use DELIM
                        instead of '_' for POS delimiter
  -D DICT, --dict DICT  use DICT as dictionary
  -u USER_DICT, --user-dict USER_DICT
                        use USER_DICT together with the default dictionary or
                        DICT (if specified)
  -a, --cut-all         full pattern cutting (ignored with POS tagging)
  -n, --no-hmm          don't use the Hidden Markov Model
  -q, --quiet           don't print loading messages to stderr
  -V, --version         show program's version number and exit

If no filename specified, use STDIN instead.

延迟加载机制

jieba 采用延迟加载,import jiebajieba.Tokenizer() 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。

import jieba
jieba.initialize()  # 手动初始化(可选)

在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:

jieba.set_dictionary('data/dict.txt.big')

例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py

其他词典

  1. 占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small

  2. 支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big

下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big')

其他语言实现

结巴分词 Java 版本

作者:piaolingxue 地址:https://github.com/huaban/jieba-analysis

结巴分词 C++ 版本

作者:yanyiwu 地址:https://github.com/yanyiwu/cppjieba

结巴分词 Rust 版本

作者:messense, MnO2 地址:https://github.com/messense/jieba-rs

结巴分词 Node.js 版本

作者:yanyiwu 地址:https://github.com/yanyiwu/nodejieba

结巴分词 Erlang 版本

作者:falood 地址:https://github.com/falood/exjieba

结巴分词 R 版本

作者:qinwf 地址:https://github.com/qinwf/jiebaR

结巴分词 iOS 版本

作者:yanyiwu 地址:https://github.com/yanyiwu/iosjieba

结巴分词 PHP 版本

作者:fukuball 地址:https://github.com/fukuball/jieba-php

结巴分词 .NET(C#) 版本

作者:anderscui 地址:https://github.com/anderscui/jieba.NET/

结巴分词 Go 版本

结巴分词Android版本

友情链接

系统集成

  1. Solr: https://github.com/sing1ee/jieba-solr

分词速度

  • 1.5 MB / Second in Full Mode
  • 400 KB / Second in Default Mode
  • 测试环境: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt

常见问题

1. 模型的数据是如何生成的?

详见: https://github.com/fxsjy/jieba/issues/7

2. “台中”总是被切成“台 中”?(以及类似情况)

P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低

解决方法:强制调高词频

jieba.add_word('台中') 或者 jieba.suggest_freq('台中', True)

3. “今天天气 不错”应该被切成“今天 天气 不错”?(以及类似情况)

解决方法:强制调低词频

jieba.suggest_freq(('今天', '天气'), True)

或者直接删除该词 jieba.del_word('今天天气')

4. 切出了词典中没有的词语,效果不理想?

解决方法:关闭新词发现

jieba.cut('丰田太省了', HMM=False) jieba.cut('我们中出了一个叛徒', HMM=False)

更多问题请点击https://github.com/fxsjy/jieba/issues?sort=updated&state=closed

修订历史

https://github.com/fxsjy/jieba/blob/master/Changelog


jieba

"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.

Features

  • Support three types of segmentation mode:
  1. Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis.
  2. Full Mode gets all the possible words from the sentence. Fast but not accurate.
  3. Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines.
  • Supports Traditional Chinese
  • Supports customized dictionaries
  • MIT License

Online demo

http://jiebademo.ap01.aws.af.cm/

(Powered by Appfog)

Usage

  • Fully automatic installation: easy_install jieba or pip install jieba
  • Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , run python setup.py install after extracting.
  • Manual installation: place the jieba directory in the current directory or python site-packages directory.
  • import jieba.

Algorithm

  • Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations.
  • Use dynamic programming to find the most probable combination based on the word frequency.
  • For unknown words, a HMM-based model is used with the Viterbi algorithm.

Main Functions

  1. Cut

  • The jieba.cut function accepts three input parameters: the first parameter is the string to be cut; the second parameter is cut_all, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model.
  • jieba.cut_for_search accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines.
  • The input string can be an unicode/str object, or a str/bytes object which is encoded in UTF-8 or GBK. Note that using GBK encoding is not recommended because it may be unexpectly decoded as UTF-8.
  • jieba.cut and jieba.cut_for_search returns an generator, from which you can use a for loop to get the segmentation result (in unicode).
  • jieba.lcut and jieba.lcut_for_search returns a list.
  • jieba.Tokenizer(dictionary=DEFAULT_DICT) creates a new customized Tokenizer, which enables you to use different dictionaries at the same time. jieba.dt is the default Tokenizer, to which almost all global functions are mapped.

Code example: segmentation

#encoding=utf-8
import jieba

seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list))  # 全模式

seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list))  # 默认模式

seg_list = jieba.cut("他来到了网易杭研大厦")
print(", ".join(seg_list))

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式
print(", ".join(seg_list))

Output:

[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学

[Accurate Mode]: 我/ 来到/ 北京/ 清华大学

[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦    (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)

[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
  1. Add a custom dictionary

Load dictionary

  • Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but you can add your own new words can ensure a higher accuracy.
  • Usage: jieba.load_userdict(file_name) # file_name is a file-like object or the path of the custom dictionary
  • The dictionary format is the same as that of dict.txt: one word per line; each line is divided into three parts separated by a space: word, word frequency, POS tag. If file_name is a path or a file opened in binary mode, the dictionary must be UTF-8 encoded.
  • The word frequency and POS tag can be omitted respectively. The word frequency will be filled with a suitable value if omitted.

For example:

创新办 3 i
云计算 5
凱特琳 nz
台中
  • Change a Tokenizer's tmp_dir and cache_file to specify the path of the cache file, for using on a restricted file system.

  • Example:

      云计算 5
      李小福 2
      创新办 3
    
      [Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
    
      [After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
    

Modify dictionary

  • Use add_word(word, freq=None, tag=None) and del_word(word) to modify the dictionary dynamically in programs.

  • Use suggest_freq(segment, tune=True) to adjust the frequency of a single word so that it can (or cannot) be segmented.

  • Note that HMM may affect the final result.

Example:

>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中将/出错/。
>>> jieba.suggest_freq(('', ''), True)
494
>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))
如果/放到/post/中/将/出错/。
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台/中/」/正确/应该/不会/被/切开
>>> jieba.suggest_freq('台中', True)
69
>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))
「/台中/」/正确/应该/不会/被/切开
  1. Keyword Extraction

import jieba.analyse

  • jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
    • sentence: the text to be extracted
    • topK: return how many keywords with the highest TF/IDF weights. The default value is 20
    • withWeight: whether return TF/IDF weights with the keywords. The default value is False
    • allowPOS: filter words with which POSs are included. Empty for no filtering.
  • jieba.analyse.TFIDF(idf_path=None) creates a new TFIDF instance, idf_path specifies IDF file path.

Example (keyword extraction)

https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py

Developers can specify their own custom IDF corpus in jieba keyword extraction

Developers can specify their own custom stop words corpus in jieba keyword extraction

There's also a TextRank implementation available.

Use: jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v'))

Note that it filters POS by default.

jieba.analyse.TextRank() creates a new TextRank instance.

  1. Part of Speech Tagging

  • jieba.posseg.POSTokenizer(tokenizer=None) creates a new customized Tokenizer. tokenizer specifies the jieba.Tokenizer to internally use. jieba.posseg.dt is the default POSTokenizer.
  • Tags the POS of each word after segmentation, using labels compatible with ictclas.
  • Example:
>>> import jieba.posseg as pseg
>>> words = pseg.cut("我爱北京天安门")
>>> for w in words:
...    print('%s %s' % (w.word, w.flag))
...
我 r
爱 v
北京 ns
天安门 ns
  1. Parallel Processing

  • Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster.

  • Based on the multiprocessing module of Python.

  • Usage:

    • jieba.enable_parallel(4) # Enable parallel processing. The parameter is the number of processes.
    • jieba.disable_parallel() # Disable parallel processing.
  • Example: https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py

  • Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version.

  • Note that parallel processing supports only default tokenizers, jieba.dt and jieba.posseg.dt.

  1. Tokenize: return words with position

  • The input must be unicode
  • Default mode
result = jieba.tokenize(u'永和服装饰品有限公司')
for tk in result:
    print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限公司            start: 6                end:10

  • Search mode
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
for tk in result:
    print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
word 永和                start: 0                end:2
word 服装                start: 2                end:4
word 饰品                start: 4                end:6
word 有限                start: 6                end:8
word 公司                start: 8                end:10
word 有限公司            start: 6                end:10
  1. ChineseAnalyzer for Whoosh

  1. Command Line Interface

$> python -m jieba --help
Jieba command line interface.

positional arguments:
  filename              input file

optional arguments:
  -h, --help            show this help message and exit
  -d [DELIM], --delimiter [DELIM]
                        use DELIM instead of ' / ' for word delimiter; or a
                        space if it is used without DELIM
  -p [DELIM], --pos [DELIM]
                        enable POS tagging; if DELIM is specified, use DELIM
                        instead of '_' for POS delimiter
  -D DICT, --dict DICT  use DICT as dictionary
  -u USER_DICT, --user-dict USER_DICT
                        use USER_DICT together with the default dictionary or
                        DICT (if specified)
  -a, --cut-all         full pattern cutting (ignored with POS tagging)
  -n, --no-hmm          don't use the Hidden Markov Model
  -q, --quiet           don't print loading messages to stderr
  -V, --version         show program's version number and exit

If no filename specified, use STDIN instead.

Initialization

By default, Jieba don't build the prefix dictionary unless it's necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call:

import jieba
jieba.initialize()  # (optional)

You can also specify the dictionary (not supported before version 0.28) :

jieba.set_dictionary('data/dict.txt.big')

Using Other Dictionaries

It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download:

  1. A smaller dictionary for a smaller memory footprint: https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small

  2. There is also a bigger dictionary that has better support for traditional Chinese (繁體): https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big

By default, an in-between dictionary is used, called dict.txt and included in the distribution.

In either case, download the file you want, and then call jieba.set_dictionary('data/dict.txt.big') or just replace the existing dict.txt.

Segmentation speed

  • 1.5 MB / Second in Full Mode
  • 400 KB / Second in Default Mode
  • Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
Comments
  • 通过用户自定义词典来增强歧义纠错能力

    通过用户自定义词典来增强歧义纠错能力

    你好,最近在用你的分词,发现 大连 美容美发 学校 中君 意是 你 值得 信赖 的 选择

    这句话被错误地切分了,我查看了dict.txt和idf.txt都没有找到“中君”和“意是”这两个词,不知道为什么>>会有这样的错分呢?

    能不能从理论上解释一下?

    RE:

    "大连美容美发学校中君意是你值得信赖的选择" 这句话首先会按照概率连乘最大路径来切割,因为单字有一定概率,而“中君意是”这四个字中不含词典中有的词,所以会被切割成单字:

    即:大连/ 美容美发/ 学校/ 中/ 君/ 意/ 是/ 你/ 值得/ 信赖/ 的/ 选择/

    然后我们认为“中/ 君/ 意/ 是/ 你/ ”这几个连续的单字 中可能有词典中没有的新词,所以再用finalseg来切一遍“中君意是你 ”,finalseg是通过HMM模型来做的,简单来说就是给单字大上B,M,E,S四种标签以使得概率最大。

    很遗憾,由于训练数据的问题,finalseg最终得到的标签是:

    中君 意是 你 B E B E S

    即认为P(B)_P(中|B)_P(E|B)_P(君|E)_P(B|E)_P(意|B)_P(E|B)_P(是|E)_P(S|E)*P(你|S) 是所有可能的标签组合中概率最大的。

    B: 开头 E:结尾 M:中间 S: 独立成词的单字

    解决方案是在词典中补充“君意”这个词,并给予一个词频,不用太大,比如3即可。

    ==user.dict===

    君意 3

    ==test.py==

    encoding=utf-8

    import sys import jieba jieba.load_userdict("user.dict") print ", ".join(jieba.cut("大连美容美发学校中君意是你值得信赖的选择"))

    ==结果=== 大连, 美容美发, 学校, 中, 君意, 是, 你, 值得, 信赖, 的, 选择

    opened by fxsjy 78
  • Spark引用jieba问题

    Spark引用jieba问题

    我在Pyspark中引用jieba,用jieba.load_userdict('xxx.txx')加载了自己的词典,但是发现RDD.map操作jieba的时候,该词典没有加载成功。于是,我定义了一个jieba_instance = jieba.Tokernice(),通过传参的方式将定义个一个jieba实例传递到RDD的Map操作函数里面。操作如下:

    ss = rdd_data.map(lambda x:judge_disease(x,column,disease_connect,table_name,jieba_instance ))

    judge_disease方法如下:

    def judge_disease(x,column,disease_connect,table_name,jieba_instance ):
        arr = []
        if not column:
            return (x,None,table_name)
        seg = jieba_instance .cut(x[column.encode('utf-8')])
        for item in seg:
            item = item.encode('utf-8')
            if disease_connect.has_key(item):
                arr.append(unicode(item,'utf-8'))
        arr = list(set(arr))
        res = (x,"$$".join(arr).split("$$"),table_name)
    
        return res
    

    报如下错误: ‘UnpicklingError: NEWOBJ class argument has NULL tp_new’

    求助:首先,我该如何通过传参的方式,将一个jieba实例传入函数? 另外,有碰到相关问题的其它解决方法吗?

    opened by liaicheng 24
  • pip 安装失败

    pip 安装失败

    WindowsServer2008 python3.3下使用pip install jieba安装失败 错误提示

          File "D:\Python33\Lib\site-packages\jieba\finalseg\__init__.py", line 62
            re_han, re_skip = re.compile(ur"([\u4E00-\u9FA5]+)"), re.compile(ur"([\.
    0-9]+|[a-zA-Z0-9]+)")
                                                              ^
        SyntaxError: invalid syntax
    
          File "D:\Python33\Lib\site-packages\jieba\posseg\__init__.py", line 68
            re_han, re_skip = re.compile(ur"([\u4E00-\u9FA5]+)"), re.compile(ur"([\.
    0-9]+|[a-zA-Z0-9]+)")
                                                              ^
        SyntaxError: invalid syntax
    
          File "D:\Python33\Lib\site-packages\jieba\__init__.py", line 42
            except ValueError, e:
                             ^
        SyntaxError: invalid syntax
    
    opened by xluer 16
  • 导入自定义库的时候报错

    导入自定义库的时候报错

    win7的系统,python 2.7

    Building Trie... loading model from cache loading model cost 1.007999897 seconds. Trie has been built succesfully. Traceback (most recent call last): File "D:\work\eclipse\workshop\python_try\src\hotkey.py", line 10, in jieba.load_userdict("userdict.txt") File "C:\Python27\lib\site-packages\jieba__init__.py", line 196, in load_userdict content = f.read().decode('utf-8') File "C:\Python27\lib\encodings\utf_8.py", line 16, in decode return codecs.utf_8_decode(input, errors, True) UnicodeDecodeError: 'utf8' codec can't decode byte 0xd4 in position 0: invalid continuation byte

    opened by e8143c 16
  • jieba分词库添加新词的问题

    jieba分词库添加新词的问题

    jieba 可以添加新词吗? 我看到词库里面每个词后面都有一个数字,不知是什么意思,添加新词,是否需要注意顺序。 我想要添>> 加一些更长的专有名词,如何能够让jieba优先按照长词切割。 比如 “模型设计师” ,当加入了这个新词之后,作为整体切割,而非割为 “模型” 和 “设计师” 两个词。

    Re:

    那个数字是我的语料中词语出现的次数。 如果你要添加新词,直接在dict.txt后面添加一行就行了,数字可以写一个较小的整数就行了,比如3。

    opened by fxsjy 12
  • 不用Trie,减少内存加快速度;优化代码细节

    不用Trie,减少内存加快速度;优化代码细节

    对于get_DAG()函数来说,用Trie数据结构,特别是在Python环境,内存使用量过大。经实验,可构造一个前缀集合解决问题。

    该集合储存词语及其前缀,如set(['数', '数据', '数据结', '数据结构'])。在句子中按字正向查找词语,在前缀列表中就继续查找,直到不在前缀列表中或超出句子范围。大约比原词库增加40%词条。

    该版本通过各项测试,与原版本分词结果相同。测试:一本5.7M的小说,用默认字典,64位Ubuntu,Python 2.7.6。 Trie:第一次加载2.8秒,缓存加载1.1秒;内存277.4MB,平均速率724kB/s 前缀字典:第一次加载2.1秒,缓存加载0.4秒;内存99.0MB,平均速率781kB/s

    此方法解决纯Python中Trie空间效率低下的问题。 同时改善了一些代码的细节,遵循PEP8的格式,优化了几个逻辑判断。

    加入了__main__.py,可直接使用python -m jieba进行分词。

    usage: python -m jieba [options] filename
    
    Jieba command line interface.
    
    positional arguments:
      filename              input file
    
    optional arguments:
      -h, --help            show this help message and exit
      -v, --version         show program's version number and exit
      -d [DELIM], --delimiter [DELIM]
                            use DELIM instead of ' / ' for word delimiter; use a
                            space if it is without DELIM
      -a, --cut-all         full pattern cutting
      -n, --no-hmm          don't use the Hidden Markov Model
      -q, --quiet           don't print loading messages to stderr
    
    If no filename specified, use STDIN instead.
    

    若采纳,请适当修改版本号、修订历史、说明等。Python 3的适配稍后发布。

    opened by gumblex 10
  • 很赞怎么就拆不开呢

    很赞怎么就拆不开呢

    很赞怎么就拆不开呢?

    print('/'.join(jieba.cut('手机样式很赞')))
    手机/样式/很赞
    
    >>> jieba.get_FREQ('很')
    69103
    >>> jieba.get_FREQ('赞')
    1347
    >>> jieba.get_FREQ('很赞')
    >>>
    
    

    明明都没有很赞这个词啊? 怎样才能才能将其拆开来呢? 试了下面的方法 并未生效

    >>> jieba.del_word('很赞')
    >>> jieba.get_FREQ('很赞')
    0
    >>> print('/'.join(jieba.cut('手机样式很赞')))
    手机/样式/很赞
    

    另外为什么Python2.7中 get_FREQ没有输出呢

    >>> jieba.get_FREQ('很')
    >>> jieba.get_FREQ('赞')
    >>> jieba.get_FREQ('很赞')
    
    opened by zhugw 9
  • 自定义字典 中英文混合间隔为空格时bug

    自定义字典 中英文混合间隔为空格时bug

    例如:Edu Trust认证 2000 使用jieba.load_userdict('xx.dict')无法读取,tracback: ValueError: invalid dictionary entry in htopics/summary/user.dict at Line 979: Edu Trust认证 2000 是否是结巴读取自定义文件时,每一行属性分割时使用的spilt,从左开始分割, 我觉得是不是应该从右开始分割并取固定的个数:rsplit('Edu Trust 2000 nv', n)

    opened by summer1988 9
  • 加载自定义字典抛出异常

    加载自定义字典抛出异常

    基本代码如下:

    jieba.load_userdict("./math_dict.txt")
    

    出错信息为:

    Building prefix dict from /usr/local/lib/python2.7/dist-packages/jieba/dict.txt ... Loading model from cache /tmp/jieba.cache Dumping model to file cache /tmp/jieba.cache Dump cache file failed. Traceback (most recent call last): File "/usr/local/lib/python2.7/dist-packages/jieba/init.py", line 100, in initialize replace_file(fpath, cache_file) OSError: [Errno 1] Operation not permitted

    原因是加载了我自定义的字典后会去尝试覆盖 /tmp/jieba.cache,因为是在服务器上,有其他用户在我之前用过 jieba ,导致我没有权限修改 /tmp/jieba.cache 这个文件。试过修改 jieba.tmp_dir ,不过好像没什么作用,不过返回了一个不同的异常:

    Building prefix dict from /home/xxx/venv/local/lib/python2.7/site-packages/jieba/dict.txt ... Dumping model to file cache /home/xxx/venv/local/lib/python2.7/site-packages/jieba/jieba.cache Dump cache file failed. Traceback (most recent call last): File "/home/xxx/venv/local/lib/python2.7/site-packages/jieba/init.py", line 106, in initialize replace_file(fpath, cache_file) OSError: [Errno 18] Invalid cross-device link

    README 里提到的 jieba.dt 我也没有找到。虽然报了这个错也还能继续运行下去,不过还是希望有一个完整的解决办法。

    版本: 0.36.2

    opened by Linusp 9
  • 分詞時全部分成單字,可能是什麼問題?

    分詞時全部分成單字,可能是什麼問題?

    在 cygwin64 下安裝,執行 python demo.py: Full Mode: / / / / / / / / / Default Mode: 我/ 来/ 到/ 北/ 京/ 清/ 华/ 大/ 学 他, 来, 到, 了, 网, 易, 杭, 研, 大, 厦 小, 明, 硕, 士, 毕, 业, 于, 中, 国, 科, 学, 院, 计, 算, 所, ,, 后, 在, 日, 本, 京, 都, 大, 学, 深, 造

    嘗試其他文本,也都是全部分成單字,cut_all 也是所有的字都不見,請問是我的環境設定有問題嗎?(python2.7 python3.2 的版本都裝了,試過的結果也都一樣)

    opened by tingsyo 9
  • 为什么有时候开启多进程模式 速度反而慢?

    为什么有时候开启多进程模式 速度反而慢?

    下面是我的测试代码

    #!/usr/bin/python
    # -*- coding: utf-8 -*-
    import jieba
    import time
    
    def test_segment(parallel=False):
        """
        """
        if parallel:
            jieba.enable_parallel(2)
        start = time.time()
        with file('pins.json') as f:
            for line in f:
                words = jieba.cut(line)
                " ".join(words)
        f.closed
        print 'parallel:%s, time elapsed:%f second' % (parallel, time.time() - start)
    
    
    def main():
        """
        """
        jieba.set_dictionary('data/dict.txt.big')
        jieba.initialize()
        test_segment()
        test_segment(True)
    
    if __name__ == '__main__':
        main()
    

    结果如下:

    Building Trie..., from /home/matrix/workspace/huaban_segmentation_service/data/dict.txt.big
    loading model from cache /tmp/jieba.user.5209089772060894903.cache
    loading model cost  1.39316701889 seconds.
    Trie has been built succesfully.
    parallel:False, time elapsed:1.211206 second
    parallel:True, time elapsed:2.321984 second
    
    opened by piaolingxue 9
  • Any way to override the native Jieba dictionary?

    Any way to override the native Jieba dictionary?

    I want to segment ONLY words that are in a limited, custom dictionary. Everything else, I want to separate into individual characters. Is there a way to do this with jieba? Or I must I do this in a post-processing step? load_userdict seems to only add words, not replace current dictionary

    opened by haveamission 0
  • Tokenizer.gen_pfdict method does not guard against duplicate entries.

    Tokenizer.gen_pfdict method does not guard against duplicate entries.

    When generating a prefix dictionary from dict.txt, duplicate entries are still added to the total variable ltotal.

    dup-in-dict-txt

    The term frequency for B超 3 n is added twice in gen_pfdict() method. As a result, the returned total is off by 3.

    The sum of term frequency should be 60,101,964, but 60,101,967 is returned.

    opened by ericlingit 0
  • How does jieba compare with stanford segmenter (stanford corenlp)

    How does jieba compare with stanford segmenter (stanford corenlp)

    I have seem some blog posts comparing various packages but I can't pin point what the pros and cons of jieba is compared to the stanford segmenter (stanford corenlp). Could anyone direct to some resources or provide some insight into this question?

    opened by ehsong 0
  • pyspark+hadoop集群下,加载自定义的字典文件总是报:无法找到自定义字典所在的路径

    pyspark+hadoop集群下,加载自定义的字典文件总是报:无法找到自定义字典所在的路径

    INFO SparkContext:54 - Added file hdfs://xxxx/user_dict_2022.txt at hdfs://xxxx/user_dict_2022.txt with timestamp 1661761280375 Utils:54 - Fetching hdfs://xxxx/user_dict_2022.txt to /data/data16/yarn/nm2/usercache/o_zzzz/appcache/application_1655780863565_yyyy/spark-f9b4a2ca-aeba-45d7-ae8c-f3a40ddbab15/userFiles-9da5a8ee-8220-41dd-bd77-73aee4e92042/fetchFileTemp9124107129410970331.tmp Traceback (most recent call last): File "project1_jieba_train_online.py", line 137, in <module> jieba.load_userdict(user_dict_path) File "/data/data13/yarn/nm2/usercache/o_zzzz/appcache/application_1655780863565_yyyy/container_e4075_1655780863565_3544813_01_000001/py3/lib/python3.7/site-packages/jieba/__init__.py", line 398, in load_userdict f = open(f, 'rb') FileNotFoundError: [Errno 2] No such file or directory: 'hdfs://xxxx/user_dict_2022.txt' ERROR ApplicationMaster:70 - User application exited with status 1 错误信息如上所示,

    1.已经在pyspark submit 的--file 参数上添加了自定义字典所在的hdfs系统文件的绝对路径
    --file hdfs://xxxx/user_dict_2022.txt

    2在py文件里面加载自定义路径的代码如下 : ` jieba.initialize()

    user_dict_path='hdfs://xxxx/user_dict_2022.txt '

    ss.sparkContext.addFile(user_dict_path)

    jieba.load_userdict(user_dict_path)

    main(ss, jieba) `

    看以前的issue,还没有我这样的问题,特此来寻求大家帮助,多谢

    opened by NYcleaner 0
Releases(v0.42.1)
Owner
Sun Junyi
Sun Junyi
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
Code for our paper "Transfer Learning for Sequence Generation: from Single-source to Multi-source" in ACL 2021.

TRICE: a task-agnostic transferring framework for multi-source sequence generation This is the source code of our work Transfer Learning for Sequence

THUNLP-MT 9 Jun 27, 2022
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
Code for the paper "Are Sixteen Heads Really Better than One?"

Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than

Paul Michel 143 Dec 14, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Vikash Singh 5.3k Jan 01, 2023
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

zxx飞翔的鱼 751 Dec 30, 2022
PyWorld3 is a Python implementation of the World3 model

The World3 model revisited in Python Install & Hello World3 How to tune your own simulation Licence How to cite PyWorld3 with Bibtex References & ackn

Charles Vanwynsberghe 248 Dec 14, 2022
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
A paper list for aspect based sentiment analysis.

Aspect-Based-Sentiment-Analysis A paper list for aspect based sentiment analysis. Survey [IEEE-TAC-20]: Issues and Challenges of Aspect-based Sentimen

jiangqn 419 Dec 20, 2022
A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Machinalis 1.2k Dec 18, 2022
LCG T-TEST USING EUCLIDEAN METHOD

This project has been created for statistical usage, purposing for determining ATL takers and nontakers using LCG ttest and Euclidean Method, especially for internal business case in Telkomsel.

2 Jan 21, 2022
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022