Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles

Overview

AppleLM

Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles (TASLP 2022)

Setup

This implementation is based on Transformers.

Preparation

  1. Download GLUE datasets

    The datasets can be downloaded automatically. Please refer to https://github.com/nyu-mll/GLUE-baselines

    git clone https://github.com/nyu-mll/GLUE-baselines.git
    python download_glue_data.py --data_dir glue_data --tasks all
    

    It is recommended to put the folder glue_data to data/. The architecture looks like:

    AppleLM
    └───data
    │   └───glue_data
    │       │   CoLA/
    │       │   MRPC/
    │       │   ...
    
  2. Visual Features

    Pre-extracted visual features can be downloaded from Google Drive borrowed from the repo Multi30K.

    The features are used in image embedding layer for indexing. Extract train-resnet50-avgpool.npy and put it in the data/ folder.

Training & Evaluate

export GLUE_DIR=data/glue_data/
export CUDA_VISIBLE_DEVICES="0"
export TASK_NAME=CoLA
python ./examples/run_glue_visual-tfidf_att.py \
    --model_type bert \
    --model_name_or_path bert-large-uncased-whole-word-masking \
    --task_name $TASK_NAME \
    --do_eval \
    --do_lower_case \
    --data_dir $GLUE_DIR/$TASK_NAME \
    --max_seq_length 128 \
    --per_gpu_eval_batch_size=32   \
    --per_gpu_train_batch_size=16   \
    --learning_rate 1e-5 \
    --eval_all_checkpoints \
    --save_steps 500 \
    --max_steps 5336 \
    --warmup_steps 320 \
    --image_dir data/train.lc.norm.tok.en \
    --image_embedding_file data/train-resnet50-avgpool.npy \
    --num_img 3 \
    --tfidf 5 \
    --image_merge att-gate \
    --stopwords_dir data/stopwords-en.txt \
    --output_dir experiments/CoLA_bert_wwm

Reference

Please kindly cite this paper in your publications if it helps your research:

@ARTICLE{zhang2022which,
  author={Zhang, Zhuosheng and Yu, Haojie and Zhao, Hai and Utiyama, Masao},
  journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing}, 
  title={Which Apple Keeps Which Doctor Away? Colorful Word Representations With Visual Oracles}, 
  year={2022},
  volume={30},
  number={},
  pages={49-59},
  doi={10.1109/TASLP.2021.3130972}
}
Owner
Zhuosheng Zhang
Ph.D. student @ Shanghai Jiao Tong University. NLP/AI/ML.
Zhuosheng Zhang
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Dec 31, 2022
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
Integrating the Best of TF into PyTorch, for Machine Learning, Natural Language Processing, and Text Generation. This is part of the CASL project: http://casl-project.ai/

Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar

ASYML 726 Dec 30, 2022
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers and helping them make a wise buying decision.

Product-Review-Summarizer - Created a product review summarizer which clustered thousands of product reviews and summarized them into a maximum of 500 characters, saving precious time of customers an

Parv Bhatt 1 Jan 01, 2022
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
Tool to check whether a GCP bucket is public or not.

Tool to check publicly accessible GCP bucket. Blog https://justm0rph3u5.medium.com/gcp-inspector-auditing-publicly-exposed-gcp-bucket-ac6cad55618c Wha

DIVYANSHU SHUKLA 7 Nov 24, 2022
Edge-Augmented Graph Transformer

Edge-augmented Graph Transformer Introduction This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https:

Md Shamim Hussain 21 Dec 14, 2022
Reading Wikipedia to Answer Open-Domain Questions

DrQA This is a PyTorch implementation of the DrQA system described in the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions. Quick Link

Facebook Research 4.3k Jan 01, 2023
Code for papers "Generation-Augmented Retrieval for Open-Domain Question Answering" and "Reader-Guided Passage Reranking for Open-Domain Question Answering", ACL 2021

This repo provides the code of the following papers: (GAR) "Generation-Augmented Retrieval for Open-domain Question Answering", ACL 2021 (RIDER) "Read

morning 49 Dec 26, 2022
Ask for weather information like a human

weather-nlp About Ask for weather information like a human. Goals Understand typical questions like: Hourly temperatures in Potsdam on 2020-09-15. Rai

5 Oct 29, 2022
Simple and efficient RevNet-Library with DeepSpeed support

RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory

Lucas Nestler 112 Dec 05, 2022
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
Repository for Graph2Pix: A Graph-Based Image to Image Translation Framework

Graph2Pix: A Graph-Based Image to Image Translation Framework Installation Install the dependencies in env.yml $ conda env create -f env.yml $ conda a

18 Nov 17, 2022
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Francesco Pham 94 Dec 25, 2022
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023