Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles

Overview

AppleLM

Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles (TASLP 2022)

Setup

This implementation is based on Transformers.

Preparation

  1. Download GLUE datasets

    The datasets can be downloaded automatically. Please refer to https://github.com/nyu-mll/GLUE-baselines

    git clone https://github.com/nyu-mll/GLUE-baselines.git
    python download_glue_data.py --data_dir glue_data --tasks all
    

    It is recommended to put the folder glue_data to data/. The architecture looks like:

    AppleLM
    └───data
    │   └───glue_data
    │       │   CoLA/
    │       │   MRPC/
    │       │   ...
    
  2. Visual Features

    Pre-extracted visual features can be downloaded from Google Drive borrowed from the repo Multi30K.

    The features are used in image embedding layer for indexing. Extract train-resnet50-avgpool.npy and put it in the data/ folder.

Training & Evaluate

export GLUE_DIR=data/glue_data/
export CUDA_VISIBLE_DEVICES="0"
export TASK_NAME=CoLA
python ./examples/run_glue_visual-tfidf_att.py \
    --model_type bert \
    --model_name_or_path bert-large-uncased-whole-word-masking \
    --task_name $TASK_NAME \
    --do_eval \
    --do_lower_case \
    --data_dir $GLUE_DIR/$TASK_NAME \
    --max_seq_length 128 \
    --per_gpu_eval_batch_size=32   \
    --per_gpu_train_batch_size=16   \
    --learning_rate 1e-5 \
    --eval_all_checkpoints \
    --save_steps 500 \
    --max_steps 5336 \
    --warmup_steps 320 \
    --image_dir data/train.lc.norm.tok.en \
    --image_embedding_file data/train-resnet50-avgpool.npy \
    --num_img 3 \
    --tfidf 5 \
    --image_merge att-gate \
    --stopwords_dir data/stopwords-en.txt \
    --output_dir experiments/CoLA_bert_wwm

Reference

Please kindly cite this paper in your publications if it helps your research:

@ARTICLE{zhang2022which,
  author={Zhang, Zhuosheng and Yu, Haojie and Zhao, Hai and Utiyama, Masao},
  journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing}, 
  title={Which Apple Keeps Which Doctor Away? Colorful Word Representations With Visual Oracles}, 
  year={2022},
  volume={30},
  number={},
  pages={49-59},
  doi={10.1109/TASLP.2021.3130972}
}
Owner
Zhuosheng Zhang
Ph.D. student @ Shanghai Jiao Tong University. NLP/AI/ML.
Zhuosheng Zhang
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022
Implementation of TTS with combination of Tacotron2 and HiFi-GAN

Tacotron2-HiFiGAN-master Implementation of TTS with combination of Tacotron2 and HiFi-GAN for Mandarin TTS. Inference In order to inference, we need t

SunLu Z 7 Nov 11, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
This repository contains examples of Task-Informed Meta-Learning

Task-Informed Meta-Learning This repository contains examples of Task-Informed Meta-Learning (paper). We consider two tasks: Crop Type Classification

10 Dec 19, 2022
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
Semantic search for quotes.

squote A semantic search engine that takes some input text and returns some (questionably) relevant (questionably) famous quotes. Built with: bert-as-

cjwallace 11 Jun 25, 2022
A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

MedMCQA MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering A large-scale, Multiple-Choice Question Answe

MedMCQA 24 Nov 30, 2022
Official implementations for various pre-training models of ERNIE-family, covering topics of Language Understanding & Generation, Multimodal Understanding & Generation, and beyond.

English|简体中文 ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中词汇、结构、语义等方面的知识,实现模型效果不断进化。ERNIE在累积 40 余个典型 NLP 任务取得 SOTA 效果,并在 G

5.4k Jan 03, 2023
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022
Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Josué Encinar 85 Dec 16, 2022
Natural Language Processing for Adverse Drug Reaction (ADR) Detection

Natural Language Processing for Adverse Drug Reaction (ADR) Detection This repo contains code from a project to identify ADRs in discharge summaries a

Medicines Optimisation Service - Austin Health 21 Aug 05, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
多语言降噪预训练模型MBart的中文生成任务

mbart-chinese 基于mbart-large-cc25 的中文生成任务 Input source input: text + /s + lang_code target input: lang_code + text + /s Usage token_ids_mapping.jso

11 Sep 19, 2022
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022