BERT-based Financial Question Answering System

Overview

Jina Jina Jina Jina Docs We are hiring tweet button Python 3.7 3.8 Docker

BERT-based Financial Question Answering System

In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-based Financial Question Answering System. We adapt a passage reranking approach by first retrieving the top-50 candidate answers, then reranking the candidate answers using FinBERT-QA, a BERT-based model fine-tuned on the FiQA dataset that achieved the state-of-the-art results.

🦉 Please refer to this tutorial for a step-by-step guide and detailed explanations.

Motivation

Motivated by the emerging demand in the financial industry for the automatic analysis of unstructured and structured data at scale, QA systems can provide lucrative and competitive advantages to companies by facilitating the decision making of financial advisers. The goal of our system is to search for a list of relevant answer passages given a question. Here is an example of a question and a ground truth answer from the FiQA dataset:

performance

Set up

Clone:

https://github.com/yuanbit/jina-financial-qa-search.git

We will use jina-financial-qa-search/ as our working directory.

Install:

pip install -r requirements.txt

Download data and model:

bash get_data.sh

Index Answers

We want to index a subset of the answer passages from the FiQA dataset, dataset/test_answers.csv:

398960	From  http://financial-dictionary.thefreedictionary.com/Business+Fundamentals  The  facts  that  affect  a  company's      underlying  value.  Examples  of  business      fundamentals  include  debt,  cash  flow,      supply  of  and  demand  for  the  company's      products,  and  so  forth.  For  instance,      if  a  company  does  not  have  a      sufficient  supply  of  products,  it  will      fail.  Likewise,  demand  for  the  product      must  remain  at  a  certain  level  in      order  for  it  to  be  successful.  Strong      business  fundamentals  are  considered      essential  for  long-term  success  and      stability.  See  also:  Value  Investing,      Fundamental  Analysis.  For  a  stock  the  basic  fundamentals  are  the  second  column  of  numbers  you  see  on  the  google  finance  summary  page,    P/E  ratio,  div/yeild,  EPS,  shares,  beta.      For  the  company  itself  it's  generally  the  stuff  on  the  'financials'  link    (e.g.  things  in  the  quarterly  and  annual  report,    debt,  liabilities,  assets,  earnings,  profit  etc.
19183	If  your  sole  proprietorship  losses  exceed  all  other  sources  of  taxable  income,  then  you  have  what's  called  a  Net  Operating  Loss  (NOL).  You  will  have  the  option  to  "carry  back"  and  amend  a  return  you  filed  in  the  last  2  years  where  you  owed  tax,  or  you  can  "carry  forward"  the  losses  and  decrease  your  taxes  in  a  future  year,  up  to  20  years  in  the  future.  For  more  information  see  the  IRS  links  for  NOL.  Note:  it's  important  to  make  sure  you  file  the  NOL  correctly  so  I'd  advise  speaking  with  an  accountant.  (Especially  if  the  loss  is  greater  than  the  cost  of  the  accountant...)
327002	To  be  deductible,  a  business  expense  must  be  both  ordinary  and  necessary.  An  ordinary  expense  is  one  that  is  common  and  accepted  in  your  trade  or  business.  A  necessary  expense  is  one  that  is  helpful  and  appropriate  for  your  trade  or  business.  An  expense  does  not  have  to  be  indispensable  to  be  considered  necessary.    (IRS,  Deducting  Business  Expenses)  It  seems  to  me  you'd  have  a  hard  time  convincing  an  auditor  that  this  is  the  case.    Since  business  don't  commonly  own  cars  for  the  sole  purpose  of  housing  $25  computers,  you'd  have  trouble  with  the  "ordinary"  test.    And  since  there  are  lots  of  other  ways  to  house  a  computer  other  than  a  car,  "necessary"  seems  problematic  also.

You can change the path to answer_collection.tsv to index with the full dataset.

Run

python app.py index

asciicast

At the end you will see the following:

✅ done in ⏱ 1 minute and 54 seconds 🐎 7.7/s
        [email protected][S]:terminated
    [email protected][I]:recv ControlRequest from ctl▸doc_indexer▸⚐
    [email protected][I]:Terminating loop requested by terminate signal RequestLoopEnd()
    [email protected][I]:#sent: 56 #recv: 56 sent_size: 1.7 MB recv_size: 1.7 MB
    [email protected][I]:request loop ended, tearing down ...
    [email protected][I]:indexer size: 865 physical size: 3.1 MB
    [email protected][S]:artifacts of this executor (vecidx) is persisted to ./workspace/doc_compound_indexer-0/vecidx.bin
    [email protected][I]:indexer size: 865 physical size: 3.2 MB
    [email protected][S]:artifacts of this executor (docidx) is persisted to ./workspace/doc_compound_indexer-0/docidx.bin

Search Answers

We need to build a custom Executor to rerank the top-50 candidate answers. We can do this with the Jina Hub API. Let's get make sure that the Jina Hub extension is installed:

pip install "jina[hub]"

We can build the custom Ranker, FinBertQARanker by running:

jina hub build FinBertQARanker/ --pull --test-uses --timeout-ready 60000

Run

We can now use our Financial QA search engine by running:

python app.py search

The Ranker might take some time to compute the relevancy scores since it is using a BERT-based model. You can try out this list of questions from the FiQA dataset:

• What does it mean that stocks are “memoryless”?
• What would a stock be worth if dividends did not exist?
• What are the risks of Dividend-yielding stocks?
• Why do financial institutions charge so much to convert currency?
• Is there a candlestick pattern that guarantees any kind of future profit?
• 15 year mortgage vs 30 year paid off in 15
• Why is it rational to pay out a dividend?
• Why do companies have a fiscal year different from the calendar year?
• What should I look at before investing in a start-up?
• Where do large corporations store their massive amounts of cash?

Community

  • Slack channel - a communication platform for developers to discuss Jina
  • Community newsletter - subscribe to the latest update, release and event news of Jina
  • LinkedIn - get to know Jina AI as a company and find job opportunities
  • Twitter Follow - follow Jina AI and interact with them using hashtag #JinaSearch
  • Company - know more about the company, Jina AI is fully committed to open-source!

License

Copyright (c) 2021 Jina's friend. All rights reserved.

Owner
Bithiah Yuan
Bithiah Yuan
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the

Anton Lozhkov 29 Oct 23, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime

Pramook Khungurn 901 Jan 06, 2023
Simplified diarization pipeline using some pretrained models - audio file to diarized segments in a few lines of code

simple_diarizer Simplified diarization pipeline using some pretrained models. Made to be a simple as possible to go from an input audio file to diariz

Chau 65 Dec 30, 2022
Unofficial Implementation of Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration

Zero-Shot Text-to-Speech for Text-Based Insertion in Audio Narration This repo contains only model Implementation of Zero-Shot Text-to-Speech for Text

Rishikesh (ऋषिकेश) 33 Sep 22, 2022
Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Yu Zhang 50 Nov 08, 2022
Maix Speech AI lib, including ASR, chat, TTS etc.

Maix-Speech 中文 | English Brief Now only support Chinese, See 中文 Build Clone code by: git clone https://github.com/sipeed/Maix-Speech Compile x86x64 c

Sipeed 267 Dec 25, 2022
A curated list of FOSS tools to improve the Hacker News experience

Awesome-Hackernews Hacker News is a social news website focusing on computer technologies, hacking and startups. It promotes any content likely to "gr

Bryton Lacquement 141 Dec 27, 2022
In this Notebook I've build some machine-learning and deep-learning to classify corona virus tweets, in both multi class classification and binary classification.

Hello, This Notebook Contains Example of Corona Virus Tweets Multi Class Classification. - Classes is: Extremely Positive, Positive, Extremely Negativ

Khaled Tofailieh 3 Dec 06, 2022
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Megagon Labs 160 Dec 23, 2022
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

hellonlp 30 Dec 12, 2022
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022