Backend for the Autocomplete platform. An AI assisted coding platform.

Overview

Introduction

A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit your needs. If migrating from Cortex, the custom predictor work exactly the same way as PythonPredictor does in Cortex. Most PythonPredictors can be converted to custom predictor by copy pasting the code and renaming some variables.

The custom predictor is packaged as a Docker container. It is recommended, but not required, to keep large model files outside of the container image itself and to load them from a storage volume. This example follows that pattern. You will need somewhere to publish your Docker image once built. This example leverages Docker Hub, where storing public images are free and private images are cheap. Google Container Registry and other registries can also be used.

Make sure you use a GPU enabled Docker image as a base, and that you enable GPU support when loading the model.

Getting Started

After installing kubectl and adding your CoreWeave Cloud access credentials, the following steps will deploy the Inference Service. Clone this repository and folder, and execute all commands in there. We'll be using all the files.

Sign up for a Docker Hub account, or use a different container registry if you already have one. The free plan works perfectly fine, but your container images will be accessible by anyone. This guide assumes a private registry, requiring authentication. Once signed up, create a new repository. For the rest of the guide, we'll assume that the name of the new repository is gpt-6b.

Build the Docker image

  1. Enter the custom-predictor directory. Build and push the Docker image. No modifications are needed to any of the files to follow along. The default Docker tag is latest. We strongly discourage you to use this, as containers are cached on the nodes and in other parts of the CoreWeave stack. Once you have pushed to a tag, do not push to that tag again. Below, we use simple versioning by using tag 1 for the first iteration of the image.
    export DOCKER_USER=thotailtd
    docker build -t $DOCKER_USER/gpt-6b:v1alpha1 .
    docker push $DOCKER_USER/gpt-6b:v1alpha1

Set up repository access

  1. Create a Secret with the Docker Hub credentials. The secret will be named docker-hub. This will be used by nodes to pull your private image. Refer to the Kubernetes Documentation for more details.

    kubectl create secret docker-registry docker-hub --docker-server=https://index.docker.io/v1/ --docker-username=<your-name> --docker-password=<your-pword> --docker-email=<your-email>
  2. Tell Kubernetes to use the newly created Secret by patching the ServiceAccount for your namespace to reference this Secret.

    kubectl patch serviceaccounts default --patch "$(cat image-secrets-serviceaccount.patch.yaml)"

Download the model

As we don't want to bundle the model in the Docker image for performance reasons, a storage volume needs to be set up and the pre-trained model downloaded to it. Storage volumes are allocated using a Kubernetes PersistentVolumeClaim. We'll also deploy a simple container that we can use to copy files to our newly created volume.

  1. Apply the PersistentVolumeClaim and the manifest for the sleep container.

    $ kubectl apply -f model-storage-pvc.yaml
    persistentvolumeclaim/model-storage created
    $ kubectl apply -f sleep-deployment.yaml
    deployment.apps/sleep created
  2. The volume is mounted to /models inside the sleep container. Download the pre-trained model locally, create a directory for it in the shared volume and upload it there. The name of the sleep Pod is assigned to a variable using kubectl. You can also get the name with kubectl get pods.

    The model will be loaded to Amazon S3 soon. Now I directly uploaded it to CoreWeave
    
    export SLEEP_POD=$(kubectl get pod -l "app.kubernetes.io/name=sleep" -o jsonpath='{.items[0].metadata.name}')
    kubectl exec -it $SLEEP_POD -- sh -c 'mkdir /models/sentiment'
    kubectl cp ./sleep_383500 $SLEEP_POD:/models/sentiment/
  3. (Optional) Instead of copying the model from the local filesystem, the model can be downloaded from Amazon S3. The Amazon CLI utilities already exist in the sleep container.

    $ export SLEEP_POD=$(kubectl get pod -l "app.kubernetes.io/name=sleep" -o jsonpath='{.items[0].metadata.name}')
    $ kubectl exec -it $SLEEP_POD -- sh
    $# aws configure
    $# mkdir /models/sentiment
    $# aws s3 sync --recursive s3://thot-ai-models /models/sentiment/

Deploy the model

  1. Modify sentiment-inferenceservice.yaml to reference your docker image.

  2. Apply the resources. This can be used to both create and update existing manifests.

     $ kubectl apply -f sentiment-inferenceservice.yaml
     inferenceservice.serving.kubeflow.org/sentiment configured
  3. List pods to see that the Predictor has launched successfully. This can take a minute, wait for Ready to indicate 2/2.

    $ kubectl get pods
    NAME                                                           READY   STATUS    RESTARTS   AGE
    sentiment-predictor-default-px8xk-deployment-85bb6787d7-h42xk  2/2     Running   0          34s

    If the predictor fails to init, look in the logs for clues kubectl logs sentiment-predictor-default-px8xk-deployment-85bb6787d7-h42xk kfserving-container.

  4. Once all the Pods are running, we can get the API endpoint for our model. The API endpoints follow the Tensorflow V1 HTTP API.

    $ kubectl get inferenceservices
    NAME        URL                                                                          READY   DEFAULT TRAFFIC   CANARY TRAFFIC   AGE
    sentiment   http://sentiment.tenant-test.knative.chi.coreweave.com/v1/models/sentiment   True    100                                23h

    The URL in the output is the public API URL for your newly deployed model. A HTTPs endpoint is also available, however this one bypasses any canary deployments. Retrieve this one with kubectl get ksvc.

  5. Run a test prediction on the URL from above. Remember to add the :predict postfix.

     $ curl -d @sample.json http://sentiment.tenant-test.knative.chi.coreweave.com/v1/models/sentiment:predict
    {"predictions": ["positive"]}
  6. Remove the InferenceService. This will delete all the associated resources, except for your model storage and sleep Deployment.

    $ kubectl delete inferenceservices sentiment
    inferenceservice.serving.kubeflow.org "sentiment" deleted
    ```# thot.ai-Back-End
Owner
Tatenda Christopher Chinyamakobvu
Tatenda Christopher Chinyamakobvu
Share constant definitions between programming languages and make your constants constant again

Introduction Reconstant lets you share constant and enum definitions between programming languages. Constants are defined in a yaml file and converted

Natan Yellin 47 Sep 10, 2022
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
API for the GPT-J language model 🦜. Including a FastAPI backend and a streamlit frontend

gpt-j-api 🦜 An API to interact with the GPT-J language model. You can use and test the model in two different ways: Streamlit web app at http://api.v

Víctor Gallego 276 Dec 31, 2022
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima

Brycen Westgarth 110 Jan 07, 2023
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
It analyze the sentiment of the user, whether it is postive or negative.

Sentiment-Analyzer-Tool It analyze the sentiment of the user, whether it is postive or negative. It uses streamlit library for creating this sentiment

Paras Patidar 18 Dec 17, 2022
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Megagon Labs 160 Dec 23, 2022
A machine learning model for analyzing text for user sentiment and determine whether its a positive, neutral, or negative review.

Sentiment Analysis on Yelp's Dataset Author: Roberto Sanchez, Talent Path: D1 Group Docker Deployment: Deployment of this application can be found her

Roberto Sanchez 0 Aug 04, 2021
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
This is an incredibly powerful calculator that is capable of many useful day-to-day functions.

Description 💻 This is an incredibly powerful calculator that is capable of many useful day-to-day functions. Such functions include solving basic ari

Jordan Leich 37 Nov 19, 2022
NLP-based analysis of poor Chinese movie reviews on Douban

douban_embedding 豆瓣中文影评差评分析 1. NLP NLP(Natural Language Processing)是指自然语言处理,他的目的是让计算机可以听懂人话。 下面是我将2万条豆瓣影评训练之后,随意输入一段新影评交给神经网络,最终AI推断出的结果。 "很好,演技不错

3 Apr 15, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022