Backend for the Autocomplete platform. An AI assisted coding platform.

Overview

Introduction

A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit your needs. If migrating from Cortex, the custom predictor work exactly the same way as PythonPredictor does in Cortex. Most PythonPredictors can be converted to custom predictor by copy pasting the code and renaming some variables.

The custom predictor is packaged as a Docker container. It is recommended, but not required, to keep large model files outside of the container image itself and to load them from a storage volume. This example follows that pattern. You will need somewhere to publish your Docker image once built. This example leverages Docker Hub, where storing public images are free and private images are cheap. Google Container Registry and other registries can also be used.

Make sure you use a GPU enabled Docker image as a base, and that you enable GPU support when loading the model.

Getting Started

After installing kubectl and adding your CoreWeave Cloud access credentials, the following steps will deploy the Inference Service. Clone this repository and folder, and execute all commands in there. We'll be using all the files.

Sign up for a Docker Hub account, or use a different container registry if you already have one. The free plan works perfectly fine, but your container images will be accessible by anyone. This guide assumes a private registry, requiring authentication. Once signed up, create a new repository. For the rest of the guide, we'll assume that the name of the new repository is gpt-6b.

Build the Docker image

  1. Enter the custom-predictor directory. Build and push the Docker image. No modifications are needed to any of the files to follow along. The default Docker tag is latest. We strongly discourage you to use this, as containers are cached on the nodes and in other parts of the CoreWeave stack. Once you have pushed to a tag, do not push to that tag again. Below, we use simple versioning by using tag 1 for the first iteration of the image.
    export DOCKER_USER=thotailtd
    docker build -t $DOCKER_USER/gpt-6b:v1alpha1 .
    docker push $DOCKER_USER/gpt-6b:v1alpha1

Set up repository access

  1. Create a Secret with the Docker Hub credentials. The secret will be named docker-hub. This will be used by nodes to pull your private image. Refer to the Kubernetes Documentation for more details.

    kubectl create secret docker-registry docker-hub --docker-server=https://index.docker.io/v1/ --docker-username=<your-name> --docker-password=<your-pword> --docker-email=<your-email>
  2. Tell Kubernetes to use the newly created Secret by patching the ServiceAccount for your namespace to reference this Secret.

    kubectl patch serviceaccounts default --patch "$(cat image-secrets-serviceaccount.patch.yaml)"

Download the model

As we don't want to bundle the model in the Docker image for performance reasons, a storage volume needs to be set up and the pre-trained model downloaded to it. Storage volumes are allocated using a Kubernetes PersistentVolumeClaim. We'll also deploy a simple container that we can use to copy files to our newly created volume.

  1. Apply the PersistentVolumeClaim and the manifest for the sleep container.

    $ kubectl apply -f model-storage-pvc.yaml
    persistentvolumeclaim/model-storage created
    $ kubectl apply -f sleep-deployment.yaml
    deployment.apps/sleep created
  2. The volume is mounted to /models inside the sleep container. Download the pre-trained model locally, create a directory for it in the shared volume and upload it there. The name of the sleep Pod is assigned to a variable using kubectl. You can also get the name with kubectl get pods.

    The model will be loaded to Amazon S3 soon. Now I directly uploaded it to CoreWeave
    
    export SLEEP_POD=$(kubectl get pod -l "app.kubernetes.io/name=sleep" -o jsonpath='{.items[0].metadata.name}')
    kubectl exec -it $SLEEP_POD -- sh -c 'mkdir /models/sentiment'
    kubectl cp ./sleep_383500 $SLEEP_POD:/models/sentiment/
  3. (Optional) Instead of copying the model from the local filesystem, the model can be downloaded from Amazon S3. The Amazon CLI utilities already exist in the sleep container.

    $ export SLEEP_POD=$(kubectl get pod -l "app.kubernetes.io/name=sleep" -o jsonpath='{.items[0].metadata.name}')
    $ kubectl exec -it $SLEEP_POD -- sh
    $# aws configure
    $# mkdir /models/sentiment
    $# aws s3 sync --recursive s3://thot-ai-models /models/sentiment/

Deploy the model

  1. Modify sentiment-inferenceservice.yaml to reference your docker image.

  2. Apply the resources. This can be used to both create and update existing manifests.

     $ kubectl apply -f sentiment-inferenceservice.yaml
     inferenceservice.serving.kubeflow.org/sentiment configured
  3. List pods to see that the Predictor has launched successfully. This can take a minute, wait for Ready to indicate 2/2.

    $ kubectl get pods
    NAME                                                           READY   STATUS    RESTARTS   AGE
    sentiment-predictor-default-px8xk-deployment-85bb6787d7-h42xk  2/2     Running   0          34s

    If the predictor fails to init, look in the logs for clues kubectl logs sentiment-predictor-default-px8xk-deployment-85bb6787d7-h42xk kfserving-container.

  4. Once all the Pods are running, we can get the API endpoint for our model. The API endpoints follow the Tensorflow V1 HTTP API.

    $ kubectl get inferenceservices
    NAME        URL                                                                          READY   DEFAULT TRAFFIC   CANARY TRAFFIC   AGE
    sentiment   http://sentiment.tenant-test.knative.chi.coreweave.com/v1/models/sentiment   True    100                                23h

    The URL in the output is the public API URL for your newly deployed model. A HTTPs endpoint is also available, however this one bypasses any canary deployments. Retrieve this one with kubectl get ksvc.

  5. Run a test prediction on the URL from above. Remember to add the :predict postfix.

     $ curl -d @sample.json http://sentiment.tenant-test.knative.chi.coreweave.com/v1/models/sentiment:predict
    {"predictions": ["positive"]}
  6. Remove the InferenceService. This will delete all the associated resources, except for your model storage and sleep Deployment.

    $ kubectl delete inferenceservices sentiment
    inferenceservice.serving.kubeflow.org "sentiment" deleted
    ```# thot.ai-Back-End
Owner
Tatenda Christopher Chinyamakobvu
Tatenda Christopher Chinyamakobvu
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

186 Dec 29, 2022
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022
PyTorch implementation of NATSpeech: A Non-Autoregressive Text-to-Speech Framework

A Non-Autoregressive Text-to-Speech (NAR-TTS) framework, including official PyTorch implementation of PortaSpeech (NeurIPS 2021) and DiffSpeech (AAAI 2022)

760 Jan 03, 2023
Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

BP-Transformer This repo contains the code for our paper BP-Transformer: Modeling Long-Range Context via Binary Partition Zihao Ye, Qipeng Guo, Quan G

Zihao Ye 119 Nov 14, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
Crowd sourced training data for Rasa NLU models

NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free

Rasa 169 Dec 26, 2022
NLP: SLU tagging

NLP: SLU tagging

北海若 3 Jan 14, 2022
Ecommerce product title recognition package

revizor This package solves task of splitting product title string into components, like type, brand, model and article (or SKU or product code or you

Bureaucratic Labs 16 Mar 03, 2022
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022
Built for cleaning purposes in military institutions

Ferramenta do AL Construído para fins de limpeza em instituições militares. Instalação Requer python = 3.2 pip install -r requirements.txt Usagem Exe

0 Aug 13, 2022
Text classification is one of the popular tasks in NLP that allows a program to classify free-text documents based on pre-defined classes.

Deep-Learning-for-Text-Document-Classification Text classification is one of the popular tasks in NLP that allows a program to classify free-text docu

Happy N. Monday 2 Mar 17, 2022
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger In this project, our aim is to tune, compare, and contrast the perf

Chirag Daryani 0 Dec 25, 2021