Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets

Related tags

Text Data & NLPlassl
Overview

Easy Language Model Pretraining leveraging Huggingface's Transformers and Datasets

What is LASSLHow to Use

License Issues

What is LASSL

LASSL은 LAnguage Semi-Supervised Learning의 약자로, 데이터만 있다면 누구나 쉽게 자신만의 언어모델을 가질 수 있도록 Huggingface의 Transformers, Datasets 라이브러리를 이용해 언어 모델 사전학습을 제공합니다.

Environment setting

아래 명령어를 통해 필요한 패키지를 설치하거나,

pip3 install -r requirements.txt

poetry를 이용하여 환경설정을 할 수 있습니다.

# poetry 설치
curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python -
# poetry dependencies 환경 설정
poetry install

How to Use

1. Train Tokenizer

python3 train_tokenizer.py \
    --corpora_dir $CORPORA_DIR \
    --corpus_type $CORPUS_TYPE \
    --sampling_ratio $SAMPLING_RATIO \
    --model_type $MODEL_TYPE \
    --vocab_size $VOCAB_SIZE \
    --min_frequency $MIN_FREQUENCY
# poetry 이용
poetry run python3 train_tokenizer.py \
    --corpora_dir $CORPORA_DIR \
    --corpus_type $CORPUS_TYPE \
    --sampling_ratio $SAMPLING_RATIO \
    --model_type $MODEL_TYPE \
    --vocab_size $VOCAB_SIZE \
    --min_frequency $MIN_FREQUENCY

2. Serialize Corpora

python3 serialize_corpora.py \
    --model_type $MODEL_TYPE \
    --tokenizer_dir $TOKENIZER_DIR \
    --corpora_dir $CORPORA_DIR \
    --corpus_type $CORPUS_TYPE \
    --max_length $MAX_LENGTH \
    --num_proc $NUM_PROC
# poetry 이용
poetry run python3 serialize_corpora.py \
    --model_type $MODEL_TYPE \
    --tokenizer_dir $TOKENIZER_DIR \
    --corpora_dir $CORPORA_DIR \
    --corpus_type $CORPUS_TYPE \
    --max_length $MAX_LENGTH \
    --num_proc $NUM_PROC

3. Pretrain Language Model

python3 pretrain_language_model.py --config_path $CONFIG_PATH
# poetry 이용
poetry run python3 pretrain_language_model.py --config_path $CONFIG_PATH
# TPU를 사용할 때는 아래 명령어를 사용합니다. (poetry 환경은 PyTorch XLA를 기본으로 제공하지 않습니다.)
python3 xla_spawn.py --num_cores $NUM_CORES pretrain_language_model.py --config_path $CONFIG_PATH

Contributors

김보섭 류민호 류인제 박장원 김형석
image1 image2 image3 image4 image5
Github Github Github Github Github

Acknowledgements

LASSL은 Tensorflow Research Cloud (TFRC) 프로그램의 Cloud TPU 지원으로 제작되었습니다.

Comments
  • Ready to release v0.1.0

    Ready to release v0.1.0

    Summary

    기본적으로 전체적인 틀은 잡혀있는 사항 v0.1.0을 release하기에 앞서 다음의 내용에 대해서 논의

    • serialize_corpora.pytrain_tokenizer.py가 지원하는 model_type에 이격이 존재
      • serialie_corpora.py: roberta, gpt2, albert
      • train_tokenizer.py: bert-uncased, bert-cased, gpt2, roberta, albert, electra
    • README.md
    help wanted 
    opened by seopbo 10
  • Refactor codes relevant to pretrain

    Refactor codes relevant to pretrain

    • 학습하고자하는 plm 별로 DataCollatorFor{MODEL}을 추가함.
    • pretrain_language_model.py에서 model_type_to_collator를 정의하여, model_type 별로 collator를 가져옴.
      • config 파일의 collator 항목에서 collator를 위한 args (e.g. mlm_probability)를 가져옴.
    • pretrain_language_model.py에서 eval_dataset을 사용하기위한 코드추가
      • config 파일의 data 항목에서 eval_dataset을 설정하기위한 test_size arg를 가져옴.
    • 그 의 isort, black 돌림.

    Refs: #30

    opened by seopbo 6
  • Add UL2 Language Modeling

    Add UL2 Language Modeling

    슬랙에서도 소개하긴 했는데 Universal Language Learning Paradigm 논문에 소개된 Mixture of Denoisers 를 활용한 목적함수가 기존 Span corruption, MLM, CLM 보다 전반적으로 좋다고 합니다. 저도 마침 회사에서 활용해 볼 생각이 있어서 lassl에 collator 및 processor를 구현하려고 하는데 어떻게 생각하시나요??

    opened by DaehanKim 4
  • Support training BART

    Support training BART

    Is your feature request related to a problem? Please describe. BART processor, collator 추가하기

    Describe the solution you'd like text_infilling 방법을 collator로 추가한다.

    enhancement 
    opened by bzantium 4
  • Add keep_in_memory option in load_dataset

    Add keep_in_memory option in load_dataset

    Is your feature request related to a problem? Please describe.

    • TPU VM에서 학습하는 과정에서 캐쉬로 인해 메모리가 충분함에도 disk 용량이 꽉차는 이슈가 발생함

    Describe the solution you'd like

    • load_dataset 단계에서 keep_in_memory 옵션을 추가하여 해결
    • Serialize과정이완료된 데이터는 disk에 저장되므로, train 단계에서는 필요가 없고 tokenizer, serialize과정에서만 추가
    opened by iron-ij 2
  • KoRobertaSmall training

    KoRobertaSmall training

    TODO

    Training tokenizer

    poetry run python3 train_tokenizer.py --corpora_dir corpora \
    --corpus_type sent_text \
    --model_type roberta \
    --vocab_size 51200 \
    --min_frequency 2
    

    Serializing corpora

    poetry run python3 serialize_corpora.py --model_type roberta \
    --tokenizer_dir tokenizers/roberta \
    --corpora_dir corpora \
    --corpus_type sent_text \
    --max_length 512 \
    --num_proc 96 \
    --batch_size 1000 \
    --writer_batch_size 1000
    

    ref:

    • https://github.com/huggingface/blog/blob/master/notebooks/13_pytorch_xla.ipynb
    help wanted 
    opened by seopbo 2
  • Support corpus_type

    Support corpus_type

    • "docu_text", "docu_json", "sent_text", "sent_json"으로 corpus_type을 정의함.
      • 위에 대응하여 load_corpora 함수를 수정함.
      • "sent_text"에 대응되는 loading scripts의 이름과 class 명을 수정함
      • serialize_corpora.py에서 corpus_type에 대응되게 argument parser를 수정함.
      • train_tokenizer.py에서 corpus_type에 대응되게 refactoring을 수행함.
      • model_name -> model_type으로 수정함.

    Refs: #23

    enhancement 
    opened by seopbo 2
  • Support setting arguments of pretraining by a config file

    Support setting arguments of pretraining by a config file

    • config 파일하나로 pretrain_language_model.py에 실행에 필요한 arguments를 전달함.
    • nested dict 처리를 위한 Omegaconf library 추가
    • CONFIG_MAPPING을 활용하여 class 생성자 호출

    Refs: #16

    opened by seopbo 2
  • argument setting

    argument setting

    To Do

    • https://github.com/lassl/lassl/blob/c507a547e5e22a3bc89bf65e448712783e688211/pretrain_language_model.py#L47
    • set ModelArguments from config.json file
    • set TrainingArguments from config.json file
    enhancement 
    opened by alxiom 2
  • Single-stage Electra collator refactored

    Single-stage Electra collator refactored

    src/lassl/collators.py

    1. Simplified the main operation (all-in-tensor)
    2. change the function name pad_for_token_type_ids -> _token_type_ids_with_pad for clarity
    documentation 
    opened by Doohae 1
  • Add config files #82

    Add config files #82

    Add config files for following:

    • bert-small.yaml
    • albert-small.yaml
    • gpt2-small.yaml
    • roberta-small.yaml Also add readme file for brief explanation of config files in general For issue #82 @seopbo
    opened by Doohae 1
  • Can you give some examples or benchmarks, that use this pretrain framework make downstream task better ?

    Can you give some examples or benchmarks, that use this pretrain framework make downstream task better ?

    I think if you can give a evidence that use this framework will improve the performance in some self build corpus in some downstream task, will make this project more attractive.

    opened by svjack 1
  • Change default save format to parquet

    Change default save format to parquet

    TODO

    • Currently, serialize_corpora.py saves encoded dataset with save_to_disk.
    • In this issue, we replace calling save_to_disk with calling `to_parquet``

    cc: @Doohae @DaehanKim

    enhancement 
    opened by seopbo 0
Releases(v1.0.0)
  • v1.0.0(Nov 2, 2022)

    What's Changed

    • [mixed] refactor: Refactor for v1.0.0 by @seopbo in https://github.com/lassl/lassl/pull/102
    • Currently, lassl suports to train bert, albert, roberta, gpt2, bart, t5, ul2
    • In next, lassl will suport to train electra. Moreover train_universal_tokenizer.py will be added to lassl.
      • train_universal_tokenizer.py will train tokenizer used to train all types of model which are supported by lassl.

    Full Changelog: https://github.com/lassl/lassl/compare/v0.2.0...v1.0.0

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Sep 22, 2022)

    What's Changed

    • Support training BART by @seopbo in https://github.com/lassl/lassl/pull/81
    • Support training T5 model by @DaehanKim in https://github.com/lassl/lassl/pull/87
    • Add config files #82 by @Doohae in https://github.com/lassl/lassl/pull/88
    • Support Electra pretrain by @Doohae in https://github.com/lassl/lassl/pull/91
    • Add UL2 Language Modeling by @DaehanKim in https://github.com/lassl/lassl/pull/98

    New Contributors

    • @DaehanKim made their first contribution in https://github.com/lassl/lassl/pull/87

    Full Changelog: https://github.com/lassl/lassl/compare/v0.1.4...v0.2.0

    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Mar 18, 2022)

    Summary

    • Refactor lassl for packaging modules to library
    • Add a function of dataset blending

    What's Changed

    • Add dataset blender by @hyunwoongko in https://github.com/lassl/lassl/pull/73
    • Remove poetry dependencies by @seopbo in https://github.com/lassl/lassl/pull/76

    New Contributors

    • @hyunwoongko made their first contribution in https://github.com/lassl/lassl/pull/73

    Full Changelog: https://github.com/lassl/lassl/compare/v0.1.2...v0.1.3

    Source code(tar.gz)
    Source code(zip)
  • v0.1.2(Dec 30, 2021)

    Summary

    • Fix bugs in src/collators.py

    What's Changed

    • [python] fix: Fix importing a invalid module by @seopbo in https://github.com/lassl/lassl/pull/72

    Full Changelog: https://github.com/lassl/lassl/compare/v0.1.1...v0.1.2

    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Dec 20, 2021)

    Summary

    • Update README.md
      • Support README.md in english.
      • Support README_ko.md in korean.
    • Fix bugs of training GPT2
    • Add examples configs for gpu, tpu environments.

    What's Changed

    • [docs] fix: Change a license by @seopbo in https://github.com/lassl/lassl/pull/64
    • [etc] docs: Add English version of README by @bzantium in https://github.com/lassl/lassl/pull/66
    • Add example configs for gpu, tpu by @seopbo in https://github.com/lassl/lassl/pull/65
    • [python] fix: debug GPT2 processor and collator by @bzantium in https://github.com/lassl/lassl/pull/69
    • Update README.md by @bzantium in https://github.com/lassl/lassl/pull/70

    Full Changelog: https://github.com/lassl/lassl/compare/v0.1.0...v0.1.1

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Dec 15, 2021)

    Summary

    • First release

    What's Changed

    • Feature/#2 by @seopbo in https://github.com/lassl/lassl/pull/4
    • feat: TPU compatibility by @monologg in https://github.com/lassl/lassl/pull/8
    • Feature/#3 GPT2Preprocessor 추가 by @iron-ij in https://github.com/lassl/lassl/pull/10
    • [docs] chore: Add authors by @seopbo in https://github.com/lassl/lassl/pull/13
    • Feature/#9 ALBERT용 Processor, Collator 추가 by @bzantium in https://github.com/lassl/lassl/pull/14
    • [python] feat: Save tokenizer by @seopbo in https://github.com/lassl/lassl/pull/19
    • [python] mixed: Support sentence per line type doc by @seopbo in https://github.com/lassl/lassl/pull/20
    • Support setting arguments of pretraining by a config file by @seopbo in https://github.com/lassl/lassl/pull/22
    • Support corpus_type by @seopbo in https://github.com/lassl/lassl/pull/25
    • Support adding additional special tokens by @seopbo in https://github.com/lassl/lassl/pull/26
    • [python] feat: Add bert processor by @bzantium in https://github.com/lassl/lassl/pull/29
    • Refactor codes relevant to pretrain by @seopbo in https://github.com/lassl/lassl/pull/31
    • Update issue templates by @seopbo in https://github.com/lassl/lassl/pull/34
    • [python] fix: sampling_ratio 조건 추가하기 by @bzantium in https://github.com/lassl/lassl/pull/36
    • [python] chore: Update dependencies by @seopbo in https://github.com/lassl/lassl/pull/38
    • [python] fix: Fix a buffer in processing.py by @seopbo in https://github.com/lassl/lassl/pull/41
    • [mixed] fix: xla_spawn 변경, config 추가 및 주석 by @bzantium in https://github.com/lassl/lassl/pull/44
    • [python] feat: add keep_in_memory option in serialize_corpora by @iron-ij in https://github.com/lassl/lassl/pull/43
    • [chore] fix: Fix a requirements.txt by @seopbo in https://github.com/lassl/lassl/pull/46
    • [python] fix: sampling할 때 중복샘플링 옵션 제거 by @bzantium in https://github.com/lassl/lassl/pull/48
    • [etc] docs: README 추가 by @bzantium in https://github.com/lassl/lassl/pull/39
    • [etc] docs: README에 LASSL 약자소개 추가하기 by @bzantium in https://github.com/lassl/lassl/pull/52
    • [python] chore: Update dependencies by @seopbo in https://github.com/lassl/lassl/pull/54
    • [python] fix: GPT2 Collator CollatorForLM 상속하기 by @bzantium in https://github.com/lassl/lassl/pull/57
    • [etc] docs: Add additional information to doc by @seopbo in https://github.com/lassl/lassl/pull/59

    New Contributors

    • @seopbo made their first contribution in https://github.com/lassl/lassl/pull/4
    • @monologg made their first contribution in https://github.com/lassl/lassl/pull/8
    • @iron-ij made their first contribution in https://github.com/lassl/lassl/pull/10
    • @bzantium made their first contribution in https://github.com/lassl/lassl/pull/14

    Full Changelog: https://github.com/lassl/lassl/commits/v0.1.0

    Source code(tar.gz)
    Source code(zip)
Owner
LASSL: LAnguage Self-Supervised Learning
LASSL: LAnguage Self-Supervised Learning
Poetry PEP 517 Build Backend & Core Utilities

Poetry Core A PEP 517 build backend implementation developed for Poetry. This project is intended to be a light weight, fully compliant, self-containe

Poetry 293 Jan 02, 2023
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
Easy-to-use CPM for Chinese text generation

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

382 Jan 07, 2023
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
Lumped-element impedance calculator and frequency-domain plotter.

fastZ: Lumped-Element Impedance Calculator fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include: Sup

Wesley Hileman 47 Nov 18, 2022
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Iker García-Ferrero 41 Dec 15, 2022
a CTF web challenge about making screenshots

screenshotter (web) A CTF web challenge about making screenshots. It is inspired by a bug found in real life. The challenge was created by @LiveOverfl

219 Jan 02, 2023
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022
Russian words synonyms and antonyms

ru_synonyms Russian words synonyms and antonyms. Install pip install git+https://github.com/ahmados/rusynonyms.git Usage from ru_synonyms import Anto

sumekenov 7 Dec 14, 2022
💥 Fast State-of-the-Art Tokenizers optimized for Research and Production

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Main features: Train new vocabularies and tok

Hugging Face 6.2k Dec 31, 2022
Implementation of legal QA system based on SentenceKoBART

LegalQA using SentenceKoBART Implementation of legal QA system based on SentenceKoBART How to train SentenceKoBART Based on Neural Search Engine Jina

Heewon Jeon(gogamza) 75 Dec 27, 2022
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
customer care chatbot made with Rasa Open Source.

Customer Care Bot Customer care bot for ecomm company which can solve faq and chitchat with users, can contact directly to team. 🛠 Features Basic E-c

Dishant Gandhi 23 Oct 27, 2022
A python package to fine-tune transformer-based models for named entity recognition (NER).

nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.

Felix Stollenwerk 13 Jul 30, 2022
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022
Mastering Transformers, published by Packt

Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv

Packt 195 Jan 01, 2023
To classify the News into Real/Fake using Features from the Text Content of the article

Hoax-Detector Authenticity of news has now become a major problem. The Idea is to classify the News into Real/Fake using Features from the Text Conten

Aravindhan 1 Feb 09, 2022
Pipelines de datos, 2021.

Este repo ilustra un proceso sencillo de automatización de transformación y modelado de datos, a través de un pipeline utilizando Luigi. Stack princip

Rodolfo Ferro 8 May 19, 2022
Code repository for "It's About Time: Analog clock Reading in the Wild"

it's about time Code repository for "It's About Time: Analog clock Reading in the Wild" Packages required: pytorch (used 1.9, any reasonable version s

52 Nov 10, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022