Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Overview

Seq2Seq Speech in JAX

A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text decoder model (e.g. GPT2, Bart) to yield a Speech Sequence-to-Sequence (Seq2Seq) model for automatic speech recognition.

The script run_flax_speech_recognition_seq2seq.py can be used to fine-tune a Speech Seq2Seq model on one of the official speech recognition datasets or a custom dataset. It makes use of the pmap JAX operator to provide model parallelism accross GPU/TPU devices.

The modelling files are based very heavily on those from Hugging Face Transformers 🤗 . This is a standalone repository to enable rapid prototyping and involvement with the community. The final modelling files and training script will be merged into Transformers 🤗 to be used with the rest of the open-source library. The final system weights will be made publicly available at huggingface.co 🚀

Seq2SeqModel Figure 1: Speech-encoder text-decoder style Seq2Seq model.

Example Usage

To instantiate a Wav2Vec2-2-Bart model with the FlaxSpeechEncoderDecoderModel framework, run the following Python script inside the cloned repo:

from transformers import AutoFeatureExtractor, AutoTokenizer
from models.modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
import numpy as np

# checkpoints to leverage
encoder_id = "facebook/wav2vec2-large-lv60"
decoder_id = "facebook/bart-large"

model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained(
    encoder_id, decoder_id, encoder_add_adapter=True, decoder_from_pt=True)

model.config.decoder_start_token_id = model.config.decoder.bos_token_id
model.config.pad_token_id = model.config.decoder.pad_token_id
model.config.eos_token_id = model.config.decoder.eos_token_id
model.config.use_cache = False
model.config.processor_class = "Wav2Vec2Processor"

# check if generation works
out = model.generate(np.ones((1, 2000)))

model.save_pretrained("./")

feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id)
feature_extractor.save_pretrained("./")
tokenizer = AutoTokenizer.from_pretrained(decoder_id)
tokenizer.save_pretrained("./")

To train the model on Librispeech ASR in default precision, run the bash script provided below:

#!/usr/bin/env bash
python run_flax_speech_recognition_seq2seq.py \
        --dataset_name="librispeech_asr" \
        --model_name_or_path="./" \
        --dataset_config_name="clean" \
        --train_split_name="train.100" \
        --eval_split_name="validation" \
        --output_dir="./" \
        --preprocessing_num_workers="16" \
        --length_column_name="input_length" \
        --overwrite_output_dir \
        --num_train_epochs="5" \
        --per_device_train_batch_size="2" \
        --per_device_eval_batch_size="2" \
        --gradient_accumulation_steps="1" \
        --logging_steps="25" \
        --max_duration_in_seconds="15" \
        --max_target_length="128" \
        --generation_max_length="40" \
        --generation_num_beams="1" \
        --learning_rate="1e-4" \
        --warmup_steps="500" \
        --text_column_name="text" \
        --save_total_limit="1" \
        --freeze_feature_encoder \
        --predict_with_generate \
        --do_lower_case \
        --do_eval \
        --do_train
Owner
Sanchit Gandhi
Open-Source Speech @huggingface
Sanchit Gandhi
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 408 Dec 29, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

Proquabet - Convert your prose into proquints and then you essentially have Vogon poetry

Proquabet Turn your prose into a constant stream of encrypted and meaningless-so

Milo Fultz 2 Oct 10, 2022
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

Aji Priyo Wibowo 5 Aug 25, 2022
Random-Word-Generator - Generates meaningful words from dictionary with given no. of letters and words.

Random Word Generator Generates meaningful words from dictionary with given no. of letters and words. This might be useful for generating short links

Mohammed Rabil 1 Jan 01, 2022
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

9 Dec 28, 2021
To classify the News into Real/Fake using Features from the Text Content of the article

Hoax-Detector Authenticity of news has now become a major problem. The Idea is to classify the News into Real/Fake using Features from the Text Conten

Aravindhan 1 Feb 09, 2022
Machine learning classifiers to predict American Sign Language .

ASL-Classifiers American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United Stat

Tarek idrees 0 Feb 08, 2022
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Azure Text-to-speech service for Home Assistant

Azure Text-to-speech service for Home Assistant The Azure text-to-speech platform uses online Azure Text-to-Speech cognitive service to read a text wi

Yassine Selmi 2 Aug 06, 2022
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
Library for Russian imprecise rhymes generation

TOM RHYMER Library for Russian imprecise rhymes generation. Quick Start Generate rhymes by any given rhyme scheme (aabb, abab, aaccbb, etc ...): from

Alexey Karnachev 6 Oct 18, 2022
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Pulkit Kathuria 173 Jan 04, 2023
A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

QData 17 Oct 15, 2022
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

AI2 11.4k Jan 01, 2023