BookNLP, a natural language processing pipeline for books

Overview

BookNLP

BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including:

  • Part-of-speech tagging
  • Dependency parsing
  • Entity recognition
  • Character name clustering (e.g., "Tom", "Tom Sawyer", "Mr. Sawyer", "Thomas Sawyer" -> TOM_SAWYER) and coreference resolution
  • Quotation speaker identification
  • Supersense tagging (e.g., "animal", "artifact", "body", "cognition", etc.)
  • Event tagging
  • Referential gender inference (TOM_SAWYER -> he/him/his)

BookNLP ships with two models, both with identical architectures but different underlying BERT sizes. The larger and more accurate big model is fit for GPUs and multi-core computers; the faster small model is more appropriate for personal computers. See the table below for a comparison of the difference, both in terms of overall speed and in accuracy for the tasks that BookNLP performs.

Small Big
Entity tagging (F1) 88.2 90.0
Supersense tagging (F1) 73.2 76.2
Event tagging (F1) 70.6 74.1
Coreference resolution (Avg. F1) 76.4 79.0
Speaker attribution (B3) 86.4 89.9
CPU time, 2019 MacBook Pro (mins.)* 3.6 15.4
CPU time, 10-core server (mins.)* 2.4 5.2
GPU time, Titan RTX (mins.)* 2.1 2.2

*timings measure speed to run BookNLP on a sample book of The Secret Garden (99K tokens). To explore running BookNLP in Google Colab on a GPU, see this notebook.

Installation

conda create --name booknlp python=3.7
conda activate booknlp
  • If using a GPU, install pytorch for your system and CUDA version by following installation instructions on https://pytorch.org.

  • Install booknlp and download Spacy model.

pip install booknlp
python -m spacy download en_core_web_sm

Usage

from booknlp.booknlp import BookNLP

model_params={
		"pipeline":"entity,quote,supersense,event,coref", 
		"model":"big"
	}
	
booknlp=BookNLP("en", model_params)

# Input file to process
input_file="input_dir/bartleby_the_scrivener.txt"

# Output directory to store resulting files in
output_directory="output_dir/bartleby/"

# File within this directory will be named ${book_id}.entities, ${book_id}.tokens, etc.
book_id="bartleby"

booknlp.process(input_file, output_directory, book_id)

This runs the full BookNLP pipeline; you are able to run only some elements of the pipeline (to cut down on computational time) by specifying them in that parameter (e.g., to only run entity tagging and event tagging, change model_params above to include "pipeline":"entity,event").

This process creates the directory output_dir/bartleby and generates the following files:

  • bartleby/bartleby.tokens -- This encodes core word-level information. Each row corresponds to one token and includes the following information:

    • paragraph ID
    • sentence ID
    • token ID within sentence
    • token ID within document
    • word
    • lemma
    • byte onset within original document
    • byte offset within original document
    • POS tag
    • dependency relation
    • token ID within document of syntactic head
    • event
  • bartleby/bartleby.entities -- This represents the typed entities within the document (e.g., people and places), along with their coreference.

    • coreference ID (unique entity ID)
    • start token ID within document
    • end token ID within document
    • NOM (nominal), PROP (proper), or PRON (pronoun)
    • PER (person), LOC (location), FAC (facility), GPE (geo-political entity), VEH (vehicle), ORG (organization)
    • text of entity
  • bartleby/bartleby.supersense -- This stores information from supersense tagging.

    • start token ID within document
    • end token ID within document
    • supersense category (verb.cognition, verb.communication, noun.artifact, etc.)
  • bartleby/bartleby.quotes -- This stores information about the quotations in the document, along with the speaker. In a sentence like "'Yes', she said", where she -> ELIZABETH_BENNETT, "she" is the attributed mention of the quotation 'Yes', and is coreferent with the unique entity ELIZABETH_BENNETT.

    • start token ID within document of quotation
    • end token ID within document of quotation
    • start token ID within document of attributed mention
    • end token ID within document of attributed mention
    • attributed mention text
    • coreference ID (unique entity ID) of attributed mention
    • quotation text
  • bartleby/bartleby.book

JSON file providing information about all characters mentioned more than 1 time in the book, including their proper/common/pronominal references, referential gender, actions for the which they are the agent and patient, objects they possess, and modifiers.

  • bartleby/bartleby.book.html

HTML file containing a.) the full text of the book along with annotations for entities, coreference, and speaker attribution and b.) a list of the named characters and major entity catgories (FAC, GPE, LOC, etc.).

Annotations

Entity annotations

The entity annotation layer covers six of the ACE 2005 categories in text:

  • People (PER): Tom Sawyer, her daughter
  • Facilities (FAC): the house, the kitchen
  • Geo-political entities (GPE): London, the village
  • Locations (LOC): the forest, the river
  • Vehicles (VEH): the ship, the car
  • Organizations (ORG): the army, the Church

The targets of annotation here include both named entities (e.g., Tom Sawyer), common entities (the boy) and pronouns (he). These entities can be nested, as in the following:

drawing

For more, see: David Bamman, Sejal Popat and Sheng Shen, "An Annotated Dataset of Literary Entities," NAACL 2019.

The entity tagging model within BookNLP is trained on an annotated dataset of 968K tokens, including the public domain materials in LitBank and a new dataset of ~500 contemporary books, including bestsellers, Pulitzer Prize winners, works by Black authors, global Anglophone books, and genre fiction (article forthcoming).

Event annotations

The event layer identifies events with asserted realis (depicted as actually taking place, with specific participants at a specific time) -- as opposed to events with other epistemic modalities (hypotheticals, future events, extradiegetic summaries by the narrator).

Text Events Source
My father’s eyes had closed upon the light of this world six months, when mine opened on it. {closed, opened} Dickens, David Copperfield
Call me Ishmael. {} Melville, Moby Dick
His sister was a tall, strong girl, and she walked rapidly and resolutely, as if she knew exactly where she was going and what she was going to do next. {walked} Cather, O Pioneers

For more, see: Matt Sims, Jong Ho Park and David Bamman, "Literary Event Detection," ACL 2019.

The event tagging model is trained on event annotations within LitBank. The small model above makes use of a distillation process, by training on the predictions made by the big model for a collection of contemporary texts.

Supersense tagging

Supersense tagging provides coarse semantic information for a sentence by tagging spans with 41 lexical semantic categories drawn from WordNet, spanning both nouns (including plant, animal, food, feeling, and artifact) and verbs (including cognition, communication, motion, etc.)

Example Source
The [station wagons]artifact [arrived]motion at [noon]time, a long shining [line]group that [coursed]motion through the [west campus]location. Delillo, White Noise

The BookNLP tagger is trained on SemCor.

.

Character name clustering and coreference

The coreference layer covers the six ACE entity categories outlined above (people, facilities, locations, geo-political entities, organizations and vehicles) and is trained on LitBank and PreCo.

Example Source
One may as well begin with [Helen]x's letters to [[her]x sister]y Forster, Howard's End

Accurate coreference at the scale of a book-length document is still an open research problem, and attempting full coreference -- where any named entity (Elizabeth), common entity (her sister, his daughter) and pronoun (she) can corefer -- tends to erroneously conflate multiple distinct entities into one. By default, BookNLP addresses this by first carrying out character name clustering (grouping "Tom", "Tom Sawyer" and "Mr. Sawyer" into a single entity), and then allowing pronouns to corefer with either named entities (Tom) or common entities (the boy), but disallowing common entities from co-referring to named entities. To turn off this mode and carry out full corefernce, add pronominalCorefOnly=False to the model_params parameters dictionary above (but be sure to inspect the output!).

For more on the coreference criteria used in this work, see David Bamman, Olivia Lewke and Anya Mansoor (2020), "An Annotated Dataset of Coreference in English Literature", LREC.

Referential gender inference

BookNLP infers the referential gender of characters by associating them with the pronouns (he/him/his, she/her, they/them, xe/xem/xyr/xir, etc.) used to refer to them in the context of the story. This method encodes several assumptions:

  • BookNLP describes the referential gender of characters, and not their gender identity. Characters are described by the pronouns used to refer to them (e.g., he/him, she/her) rather than labels like "M/F".

  • Prior information on the alignment of names with referential gender (e.g., from government records or larger background datasets) can be used to provide some information to inform this process if desired (e.g., "Tom" is often associated with he/him in pre-1923 English texts). Name information, however, should not be uniquely determinative, but rather should be sensitive to the context in which it is used (e.g., "Tom" in the book "Tom and Some Other Girls", where Tom is aligned with she/her). By default, BookNLP uses prior information on the alignment of proper names and honorifics with pronouns drawn from ~15K works from Project Gutenberg; this prior information can be ignored by setting referential_gender_hyperparameterFile:None in the model_params file. Alternative priors can be used by passing the pathname to a prior file (in the same format as english/data/gutenberg_prop_gender_terms.txt) to this parameter.

  • Users should be free to define the referential gender categories used here. The default set of categories is {he, him, his}, {she, her}, {they, them, their}, {xe, xem, xyr, xir}, and {ze, zem, zir, hir}. To specify a different set of categories, update the model_params setting to define them: referential_gender_cats: [ ["he", "him", "his"], ["she", "her"], ["they", "them", "their"], ["xe", "xem", "xyr", "xir"], ["ze", "zem", "zir", "hir"] ]

Speaker attribution

The speaker attribution model identifies all instances of direct speech in the text and attributes it to its speaker.

Quote Speaker Source
— Come up , Kinch ! Come up , you fearful jesuit ! Buck_Mulligan-0 Joyce, Ulysses
‘ Oh dear ! Oh dear ! I shall be late ! ’ The_White_Rabbit-4 Carroll, Alice in Wonderland
“ Do n't put your feet up there , Huckleberry ; ” Miss_Watson-26 Twain, Huckleberry Finn

This model is trained on speaker attribution data in LitBank. For more on the quotation annotations, see this paper.

Part-of-speech tagging and dependency parsing

BookNLP uses Spacy for part-of-speech tagging and dependency parsing.

Acknowledgments

BookNLP is supported by the National Endowment for the Humanities (HAA-271654-20) and the National Science Foundation (IIS-1942591).
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
OCR을 이용하여 인원수를 인식 후 줌을 Kill 해줍니다

How To Use killtheZoom-2.0 Windows 0. https://joyhong.tistory.com/79 이 글을 보면서 tesseract를 C:\Program Files\Tesseract-OCR 경로로 설치해주세요(한국어 언어 추가 필요) 상단의 초

김정인 9 Sep 13, 2021
GPT-3: Language Models are Few-Shot Learners

GPT-3: Language Models are Few-Shot Learners arXiv link Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-trainin

OpenAI 12.5k Jan 05, 2023
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti

Sidharth Pal 20 Dec 14, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Auto-researching tool generating word documents.

About ResearchTE automates researching by generating document with answers to given questions. Supports getting results from: Google DuckDuckGo (with

1 Feb 14, 2022
Code Generation using a large neural network called GPT-J

CodeGenX is a Code Generation system powered by Artificial Intelligence! It is delivered to you in the form of a Visual Studio Code Extension and is Free and Open-source!

DeepGenX 389 Dec 31, 2022
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs".

CrossSum This repository contains the code, data, and models of the paper titled "CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summ

BUET CSE NLP Group 29 Nov 19, 2022
Python api wrapper for JellyFish Lights

Python api wrapper for JellyFish Lights The hope is to make this a pip installable package Current capabalilities: Connects to a local JellyFish Light

10 Dec 18, 2022
Protein Language Model

ProteinLM We pretrain protein language model based on Megatron-LM framework, and then evaluate the pretrained model results on TAPE (Tasks Assessing P

THUDM 77 Dec 27, 2022
BiQE: Code and dataset for the BiQE paper

BiQE: Bidirectional Query Embedding This repository includes code for BiQE and the datasets introduced in Answering Complex Queries in Knowledge Graph

Bhushan Kotnis 1 Oct 20, 2021
CCF BDCI BERT系统调优赛题baseline(Pytorch版本)

CCF BDCI BERT系统调优赛题baseline(Pytorch版本) 此版本基于Pytorch后端的huggingface进行实现。由于此实现使用了Oneflow的dataloader作为数据读入的方式,因此也需要安装Oneflow。其它框架的数据读取可以参考OneflowDataloade

Ziqi Zhou 9 Oct 13, 2022
Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

MITRE Cybersecurity 64 Nov 22, 2022
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022