PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

Overview

StyleSpeech - PyTorch Implementation

PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation.

Status (2021.06.09)

  • StyleSpeech
  • Meta-StyleSpeech

Quickstart

Dependencies

You can install the Python dependencies with

pip3 install -r requirements.txt

Inference

You have to download the pretrained models and put them in output/ckpt/LibriTTS/.

For English single-speaker TTS, run

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --ref_audio path/to/reference_audio.wav --speaker_id <SPEAKER_ID> --restore_step 100000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

The generated utterances will be put in output/result/. Your synthesized speech will have ref_audio's style spoken by speaker_id speaker. Note that the controllability of speakers is not a vital interest of StyleSpeech.

Batch Inference

Batch inference is also supported, try

python3 synthesize.py --source preprocessed_data/LibriTTS/val.txt --restore_step 100000 --mode batch -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

to synthesize all utterances in preprocessed_data/LibriTTS/val.txt. This can be viewed as a reconstruction of validation datasets referring to themselves for the reference style.

Controllability

The pitch/volume/speaking rate of the synthesized utterances can be controlled by specifying the desired pitch/energy/duration ratios. For example, one can increase the speaking rate by 20 % and decrease the volume by 20 % by

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --restore_step 100000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml --duration_control 0.8 --energy_control 0.8

Note that the controllability is originated from FastSpeech2 and not a vital interest of StyleSpeech.

Training

Datasets

The supported datasets are

  • LibriTTS: a multi-speaker English dataset containing 585 hours of speech by 2456 speakers.
  • (will be added more)

Preprocessing

First, run

python3 prepare_align.py config/LibriTTS/preprocess.yaml

for some preparations.

In this implementation, Montreal Forced Aligner (MFA) is used to obtain the alignments between the utterances and the phoneme sequences.

Download the official MFA package and run

./montreal-forced-aligner/bin/mfa_align raw_data/LibriTTS/ lexicon/librispeech-lexicon.txt english preprocessed_data/LibriTTS

or

./montreal-forced-aligner/bin/mfa_train_and_align raw_data/LibriTTS/ lexicon/librispeech-lexicon.txt preprocessed_data/LibriTTS

to align the corpus and then run the preprocessing script.

python3 preprocess.py config/LibriTTS/preprocess.yaml

Training

Train your model with

python3 train.py -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

TensorBoard

Use

tensorboard --logdir output/log/LibriTTS

to serve TensorBoard on your localhost. The loss curves, synthesized mel-spectrograms, and audios are shown.

Implementation Issues

  1. Use 22050Hz sampling rate instead of 16kHz.
  2. Add one fully connected layer at the beginning of Mel-Style Encoder to upsample input mel-spectrogram from 80 to 128.
  3. The Paper doesn't mention speaker embedding for the Generator, but I add it as a normal multi-speaker TTS. And the style_prototype of Meta-StyleSpeech can be seen as a speaker embedding space.
  4. Use HiFi-GAN instead of MelGAN for vocoding.

Citation

@misc{lee2021stylespeech,
  author = {Lee, Keon},
  title = {StyleSpeech},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/keonlee9420/StyleSpeech}}
}

References

Comments
  • What is the perfermance compared with Adaspeech

    What is the perfermance compared with Adaspeech

    Thank you for your great work and share. Your work looks differ form adaspeech and NAUTILUS. You use GANs which i did not see in other papers regarding adaptative TTS. Have you compare this method with adaspeech1/2? how about the mos and similarity?

    opened by Liujingxiu23 10
  • The size of tensor a (xx) must match the size of tensor b (yy)

    The size of tensor a (xx) must match the size of tensor b (yy)

    Hi I try to run your project. I use cuda 10.1, all requirements are installed (with torch 1.8.1), all models are preloaded. But i have an error: python3 synthesize.py --text "Hello world" --restore_step 200000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml --duration_control 0.8 --energy_control 0.8 --ref_audio ref.wav

    Removing weight norm...
    Raw Text Sequence: Hello world
    Phoneme Sequence: {HH AH0 L OW1 W ER1 L D}
    Traceback (most recent call last):
      File "synthesize.py", line 268, in <module>
        synthesize(model, args.restore_step, configs, vocoder, batchs, control_values)
      File "synthesize.py", line 152, in synthesize
        d_control=duration_control
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, *kwargs)
      File "/usr/local/work/model/StyleSpeech.py", line 144, in forward
        d_control,
      File "/usr/local/work/model/StyleSpeech.py", line 91, in G
        output, mel_masks = self.mel_decoder(output, style_vector, mel_masks)
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, kwargs)
      File "/usr/local/work/model/modules.py", line 307, in forward
        enc_seq = self.mel_prenet(enc_seq, mask)
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, kwargs)
      File "/usr/local/work/model/modules.py", line 259, in forward
        x = x.masked_fill(mask.unsqueeze(-1), 0)
    RuntimeError: The size of tensor a (44) must match the size of tensor b (47) at non-singleton dimension 1
    
    opened by DiDimus 9
  • VCTK datasets

    VCTK datasets

    Hi, I note your paper evaluates the models' performance on VCTK datasets, but I not see the process file about VCTK. Hence, could you share the files, thank you very much.

    opened by XXXHUA 7
  • training error

    training error

    Thanks for your sharing!

    I tried both naive and main branches using your checkpoints, it seems the former one is much better. So I trained AISHELL3 models with small changes on your code and the synthesized waves are good for me.

    However when I add my own data into AISHELL3, some error occurred: Training: 0%| | 3105/900000 [32:05<154:31:49, 1.61it/s] Epoch 2: 69%|██████████████████████▏ | 318/459 [05:02<02:14, 1.05it/s] File "train.py", line 211, in main(args, configs) File "train.py", line 87, in main output = model(*(batch[2:])) File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 165, in forward return self.module(*inputs[0], **kwargs[0]) File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/workspace/StyleSpeech-naive/model/StyleSpeech.py", line 83, in forward ) = self.variance_adaptor( File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/workspace/StyleSpeech-naive/model/modules.py", line 404, in forward x = x + pitch_embedding RuntimeError: The size of tensor a (52) must match the size of tensor b (53) at non-singleton dimension 1

    I only replaced two speakers and preprocessed data the same as the in readme.

    Do you have any advice for this error ? Any suggestion is appreciated.

    opened by MingZJU 6
  • the synthesis result is bad when using pretrain model

    the synthesis result is bad when using pretrain model

    hello sir, thanks for your sharing.

    i meet a problem when i using pretrain model to synthsize demo file. the effect of synthesized wav is so bad.

    do you konw what problem happened?

    pretrain_model: output/ckpt/LibriTTS_meta_learner/200000.pth.tar ref_audio: ref_audio.zip demo_txt: {Promises are often like the butterfly, which disappear after beautiful hover. No matter the ending is perfect or not, you cannot disappear from my world.} demo_wav:demo.zip

    opened by mnfutao 4
  • Maybe style_prototype can instead of ref_mel?

    Maybe style_prototype can instead of ref_mel?

    hello @keonlee9420 , thanks for your contribution on StyleSpeech. When I read your paper and source code, I think that the style_prototype (which is an embedding matrix) maybe can instread of the ref_mel, because there is a CE-loss between style_prototype and style_vector, which can control this embedding matrix close to style. In short, we can give a speaker id to synthesize this speaker's wave. Is it right?

    opened by forwiat 3
  • architecture shows bad results

    architecture shows bad results

    Hi, i have completely repeated your steps for learning. During training, style speech loss fell down, but after learning began, meta style speech loss began to grow up. Can you help with training the model? I can describe my steps in more detail.

    opened by e0xextazy 2
  • UnboundLocalError: local variable 'pitch' referenced before assignment

    UnboundLocalError: local variable 'pitch' referenced before assignment

    Hi, when I run preprocessor.py, I have this problem: /preprocessor.py", line 92, in build_from_path if len(pitch) > 0: UnboundLocalError: local variable 'pitch' referenced before assignment When I try to add a global declaration to the function, it shows NameError: name 'pitch' is not defined How should this be resolved? I would be grateful if I could get your guidance soon.

    opened by Summerxu86 0
  • How can I improve the synthesized results?

    How can I improve the synthesized results?

    I have trained the model for 200k steps, and still, the synthesised results are extremely bad. loss_curve This is what my loss curve looks like. Can you help me with what can I do now to improve my synthesized audio results?

    opened by sanjeevani279 1
  • RuntimeError: Error(s) in loading state_dict for Stylespeech

    RuntimeError: Error(s) in loading state_dict for Stylespeech

    Hi @keonlee9420, I am getting the following error, while running the naive branch :

    Traceback (most recent call last):
      File "synthesize.py", line 242, in <module>
        model = get_model(args, configs, device, train=False)
      File "/home/azureuser/aditya_workspace/stylespeech_keonlee_naive/utils/model.py", line 21, in get_model
        model.load_state_dict(ckpt["model"], strict=True)
      File "/home/azureuser/aditya_workspace/keonlee/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1223, in load_state_dict
        raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
    RuntimeError: Error(s) in loading state_dict for StyleSpeech:
    	Missing key(s) in state_dict: "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_v", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_v", "D_t.final_linear.fc_layer.fc_layer.linear.weight_orig", "D_t.final_linear.fc_layer.fc_layer.linear.weight", "D_t.final_linear.fc_layer.fc_layer.linear.weight_u", "D_t.final_linear.fc_layer.fc_layer.linear.weight_orig", "D_t.final_linear.fc_layer.fc_layer.linear.weight_u", "D_t.final_linear.fc_layer.fc_layer.linear.weight_v", "D_s.fc_1.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_1.fc_layer.fc_layer.linear.weight", "D_s.fc_1.fc_layer.fc_layer.linear.weight_u", "D_s.fc_1.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_1.fc_layer.fc_layer.linear.weight_u", "D_s.fc_1.fc_layer.fc_layer.linear.weight_v", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_v", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_v", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.bias", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_v", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.bias", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_v", "D_s.slf_attn_stack.0.w_qs.linear.weight_orig", "D_s.slf_attn_stack.0.w_qs.linear.weight", "D_s.slf_attn_stack.0.w_qs.linear.weight_u", "D_s.slf_attn_stack.0.w_qs.linear.weight_orig", "D_s.slf_attn_stack.0.w_qs.linear.weight_u", "D_s.slf_attn_stack.0.w_qs.linear.weight_v", "D_s.slf_attn_stack.0.w_ks.linear.weight_orig", "D_s.slf_attn_stack.0.w_ks.linear.weight", "D_s.slf_attn_stack.0.w_ks.linear.weight_u", "D_s.slf_attn_stack.0.w_ks.linear.weight_orig", "D_s.slf_attn_stack.0.w_ks.linear.weight_u", "D_s.slf_attn_stack.0.w_ks.linear.weight_v", "D_s.slf_attn_stack.0.w_vs.linear.weight_orig", "D_s.slf_attn_stack.0.w_vs.linear.weight", "D_s.slf_attn_stack.0.w_vs.linear.weight_u", "D_s.slf_attn_stack.0.w_vs.linear.weight_orig", "D_s.slf_attn_stack.0.w_vs.linear.weight_u", "D_s.slf_attn_stack.0.w_vs.linear.weight_v", "D_s.slf_attn_stack.0.layer_norm.weight", "D_s.slf_attn_stack.0.layer_norm.bias", "D_s.slf_attn_stack.0.fc.linear.weight_orig", "D_s.slf_attn_stack.0.fc.linear.weight", "D_s.slf_attn_stack.0.fc.linear.weight_u", "D_s.slf_attn_stack.0.fc.linear.weight_orig", "D_s.slf_attn_stack.0.fc.linear.weight_u", "D_s.slf_attn_stack.0.fc.linear.weight_v", "D_s.fc_2.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_2.fc_layer.fc_layer.linear.weight", "D_s.fc_2.fc_layer.fc_layer.linear.weight_u", "D_s.fc_2.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_2.fc_layer.fc_layer.linear.weight_u", "D_s.fc_2.fc_layer.fc_layer.linear.weight_v", "D_s.V.fc_layer.fc_layer.linear.weight", "D_s.w_b_0.fc_layer.fc_layer.linear.weight", "D_s.w_b_0.fc_layer.fc_layer.linear.bias", "style_prototype.weight".
    	Unexpected key(s) in state_dict: "speaker_emb.weight".
    

    Can you help with this, seems like the pre-trained weights are old and do not conform to the current architecture.

    opened by sirius0503 1
  • time dimension doesn't match

    time dimension doesn't match

    ^MTraining: 0%| | 0/200000 [00:00<?, ?it/s] ^MEpoch 1: 0%| | 0/454 [00:00<?, ?it/s]^[[APrepare training ... Number of StyleSpeech Parameters: 28197333 Removing weight norm... Traceback (most recent call last): File "train.py", line 224, in main(args, configs) File "train.py", line 98, in main output = (None, None, model((batch[2:-5]))) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 165, in forward return self.module(*inputs[0], **kwargs[0]) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/StyleSpeech.py", line 144, in forward d_control, File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/StyleSpeech.py", line 88, in G d_control, File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/modules.py", line 417, in forward x = x + pitch_embedding RuntimeError: The size of tensor a (132) must match the size of tensor b (130) at non-singleton dimension 1 ^MTraining: 0%| | 1/200000 [00:02<166:02:12, 2.99s/it]

    I think it might because of mfa I used. As mentioned in https://montreal-forced-aligner.readthedocs.io/en/latest/getting_started.html, I installed mfa through conda.

    Then I used mfa align raw_data/LibriTTS lexicon/librispeech-lexicon.txt english preprocessed_data/LibriTTS instead of the way you showed. But I can't find a way to run it as the way you showed, because I installed mfa through conda.

    opened by MingjieChen 24
Releases(v1.0.2)
Owner
Keon Lee
Expressive Speech Synthesis | Conversational AI | Open-domain Dialog | NLP | Generative Models | Empathic Computing | HCI
Keon Lee
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
Just a basic Telegram AI chat bot written in Python using Pyrogram.

Nikko ChatBot Just a basic Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher. A bot token. Installation $ https

ʀᴇxɪɴᴀᴢᴏʀ 2 Oct 21, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
A python gui program to generate reddit text to speech videos from the id of any post.

Reddit text to speech generator A python gui program to generate reddit text to speech videos from the id of any post. Current functionality Generate

Aadvik 17 Dec 19, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022
Ukrainian TTS (text-to-speech) using Coqui TTS

title emoji colorFrom colorTo sdk app_file pinned Ukrainian TTS 🐸 green green gradio app.py false Ukrainian TTS 📢 🤖 Ukrainian TTS (text-to-speech)

Yurii Paniv 85 Dec 26, 2022
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"

Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua

Timo Schick 1.4k Dec 30, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
A fast hierarchical dimensionality reduction algorithm.

h-NNE: Hierarchical Nearest Neighbor Embedding A fast hierarchical dimensionality reduction algorithm. h-NNE is a general purpose dimensionality reduc

Marios Koulakis 35 Dec 12, 2022
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
2021 2학기 데이터크롤링 기말프로젝트

공지 주제 웹 크롤링을 이용한 취업 공고 스케줄러 스케줄 주제 정하기 코딩하기 핵심 코드 설명 + 피피티 구조 구상 // 12/4 토 피피티 + 스크립트(대본) 제작 + 녹화 // ~ 12/10 ~ 12/11 금~토 영상 편집 // ~12/11 토 웹크롤러 사람인_평균

Choi Eun Jeong 2 Aug 16, 2022
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Dedupe Python Library dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on

Dedupe.io 3.6k Jan 02, 2023
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
A collection of GNN-based fake news detection models.

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Prefere

SafeGraph 251 Jan 01, 2023
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022
多语言降噪预训练模型MBart的中文生成任务

mbart-chinese 基于mbart-large-cc25 的中文生成任务 Input source input: text + /s + lang_code target input: lang_code + text + /s Usage token_ids_mapping.jso

11 Sep 19, 2022
EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Neosapience 99 Jan 02, 2023
Transcribing audio files using Hugging Face's implementation of Wav2Vec2 + "chain-linking" NLP tasks to combine speech-to-text with downstream tasks like translation and summarisation.

PART 2: CHAIN LINKING AUDIO-TO-TEXT NLP TASKS 2A: TRANSCRIBE-TRANSLATE-SENTIMENT-ANALYSIS In notebook3.0, I demo a simple workflow to: transcribe a lo

Chua Chin Hon 30 Jul 13, 2022