This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Overview

Splinter

This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to appear at ACL 2021.

Our pretraining code is based on TensorFlow (checked on 1.15), while fine-tuning is based on PyTorch (1.7.1) and Transformers (2.9.0). Note each has its own requirement file: pretraining/requirements.txt and finetuning/requirements.txt.

Data

Downloading Few-Shot MRQA Splits

curl -L https://www.dropbox.com/sh/pfg8j6yfpjltwdx/AAC8Oky0w8ZS-S3S5zSSAuQma?dl=1 > mrqa-few-shot.zip
unzip mrqa-few-shot.zip -d mrqa-few-shot

Pretrained Model

Command for downloading Splinter
curl -L https://www.dropbox.com/sh/h63xx2l2fjq8bsz/AAC5_Z_F2zBkJgX87i3IlvGca?dl=1 > splinter.zip
unzip splinter.zip -d splinter 

Pretraining

Create a virtual environment and execute

cd pretraining
pip install -r requirements.txt  # or requirements-gpu.txt for a GPU version

Then download the raw data (our pretraining was based on Wikipedia and BookCorpus). We support two data formats:

  • For wiki, a tag starts a new article and a ends it.
  • For BookCorpus, we process an already-tokenized file where tokens are separated by whitespaces. Newlines stands for a new book.
Command for creating the pretraining data

This command takes as input a set of files ($INPUT_PATTERN) and creates a tensorized dataset for pretraining. It supports the following masking schemes:

Command for creating the data for Splinter (recurring span selection)
cd pretraining
python create_pretraining_data.py \
    --input_file=$INPUT_PATTERN \
    --output_dir=$OUTPUT_DIR \
    --vocab_file=vocabs/bert-cased-vocab.txt \
    --do_lower_case=False \
    --do_whole_word_mask=False \
    --max_seq_length=512 \
    --num_processes=63 \
    --dupe_factor=5 \
    --max_span_length=10 \
    --recurring_span_selection=True \
    --only_recurring_span_selection=True \
    --max_questions_per_seq=30

n-gram statistics are written to ngrams.txt in the output directory.

Command for pretraining Splinter
cd pretraining
python run_pretraining.py \
    --bert_config_file=configs/bert-base-cased-config.json \
    --input_file=$INPUT_FILE \
    --output_dir=$OUTPUT_DIR \
    --max_seq_length=512 \
    --recurring_span_selection=True \
    --only_recurring_span_selection=True \
    --max_questions_per_seq=30 \
    --do_train \
    --train_batch_size=256 \
    --learning_rate=1e-4 \
    --num_train_steps=2400000 \
    --num_warmup_steps=10000 \
    --save_checkpoints_steps=10000 \
    --keep_checkpoint_max=240 \
    --use_tpu \
    --num_tpu_cores=8 \
    --tpu_name=$TPU_NAME

This can be trained using GPUs by dropping the use_tpu flag (although it was tested mainly on TPUs).

Convert TensorFlow Model to PyTorch

In order to fine-tune the TF model you pretrained with run_pretraining.py, you will first need to convert it to PyTorch. You can do so by

cd model_conversion
pip install -r requirements.txt
python convert_tf_to_pytorch.py --tf_checkpoint_path $TF_MODEL_PATH --pytorch_dump_path $OUTPUT_PATH

Fine-tuning

Fine-tuning has different requirements than pretraining, as it uses HuggingFace's Transformers library. Create a virtual environment and execute

cd finetuning
pip install -r requirements.txt

Please Note: If you want to reproduce results from the paper or run with a QASS head in genral, questions need to be augmented with a [QUESTION] token. In order to do so, please run

cd finetuning
python qass_preprocess.py --path "../mrqa-few-shot/*/*.jsonl"

This will add a [MASK] token to each question in the training data, which will later be replaced by a [QUESTION] token automatically by the QASS layer implementation.

Then fine-tune Splinter by

cd finetuning
export MODEL="../splinter"
export OUTPUT_DIR="output"
python run_mrqa.py \
    --model_type=bert \
    --model_name_or_path=$MODEL \
    --qass_head=True \
    --tokenizer_name=$MODEL \
    --output_dir=$OUTPUT_DIR \
    --train_file="../mrqa-few-shot/squad/squad-train-seed-42-num-examples-16_qass.jsonl" \
    --predict_file="../mrqa-few-shot/squad/dev_qass.jsonl" \
    --do_train \
    --do_eval \
    --max_seq_length=384 \
    --doc_stride=128 \
    --threads=4 \
    --save_steps=50000 \
    --per_gpu_train_batch_size=12 \
    --per_gpu_eval_batch_size=16 \
    --learning_rate=3e-5 \
    --max_answer_length=10 \
    --warmup_ratio=0.1 \
    --min_steps=200 \
    --num_train_epochs=10 \
    --seed=42 \
    --use_cache=False \
    --evaluate_every_epoch=False 

In order to train with automatic mixed precision, install apex and add the --fp16 flag.

See an example script for fine-tuning SpanBERT (rather than Splinter) here.

Citation

If you find this work helpful, please cite us

@inproceedings{ram-etal-2021-shot,
    title = "Few-Shot Question Answering by Pretraining Span Selection",
    author = "Ram, Ori  and
      Kirstain, Yuval  and
      Berant, Jonathan  and
      Globerson, Amir  and
      Levy, Omer",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.239",
    pages = "3066--3079",
}

Acknowledgements

We would like to thank the European Research Council (ERC) for funding the project, and to Google’s TPU Research Cloud (TRC) for their support in providing TPUs.

Owner
Ori Ram
PhD Candidate at Tel Aviv University, focusing on NLP and Machine Learning
Ori Ram
Code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

This repository contains the code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

Chenhe Dong 28 Nov 10, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
Blender addon - Scrub timeline from viewport with a shortcut

Viewport scrub timeline Move in the timeline directly in viewport and snap to nearest keyframe Note : This standalone feature will be added in the nat

Samuel Bernou 40 Nov 07, 2022
小布助手对话短文本语义匹配的一个baseline

oppo-text-match 小布助手对话短文本语义匹配的一个baseline 模型 参考:https://kexue.fm/archives/8213 base版本线下大概0.952,线上0.866(单模型,没做K-flod融合)。 训练 测试环境:tensorflow 1.15 + keras

苏剑林(Jianlin Su) 132 Dec 14, 2022
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Snm Logic 1 Dec 20, 2021
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
File-based TF-IDF: Calculates keywords in a document, using a word corpus.

File-based TF-IDF Calculates keywords in a document, using a word corpus. Why? Because I found myself with hundreds of plain text files, with no way t

Jakob Lindskog 1 Feb 11, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
Curso práctico: NLP de cero a cien 🤗

Curso Práctico: NLP de cero a cien Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utili

Somos NLP 147 Jan 06, 2023
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretra

Mozilla 6.5k Jan 08, 2023
Pre-Training with Whole Word Masking for Chinese BERT

Pre-Training with Whole Word Masking for Chinese BERT

Yiming Cui 7.7k Dec 31, 2022
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022
Final Project Bootcamp Zero

The Quest (Pygame) Descripción Este es el repositorio de código The-Quest para el proyecto final Bootcamp Zero de KeepCoding. El juego consiste en la

Seven-z01 1 Mar 02, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
IMDB film review sentiment classification based on BERT's supervised learning model.

IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.

Paris 1 Apr 17, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022