This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Overview

Splinter

This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to appear at ACL 2021.

Our pretraining code is based on TensorFlow (checked on 1.15), while fine-tuning is based on PyTorch (1.7.1) and Transformers (2.9.0). Note each has its own requirement file: pretraining/requirements.txt and finetuning/requirements.txt.

Data

Downloading Few-Shot MRQA Splits

curl -L https://www.dropbox.com/sh/pfg8j6yfpjltwdx/AAC8Oky0w8ZS-S3S5zSSAuQma?dl=1 > mrqa-few-shot.zip
unzip mrqa-few-shot.zip -d mrqa-few-shot

Pretrained Model

Command for downloading Splinter
curl -L https://www.dropbox.com/sh/h63xx2l2fjq8bsz/AAC5_Z_F2zBkJgX87i3IlvGca?dl=1 > splinter.zip
unzip splinter.zip -d splinter 

Pretraining

Create a virtual environment and execute

cd pretraining
pip install -r requirements.txt  # or requirements-gpu.txt for a GPU version

Then download the raw data (our pretraining was based on Wikipedia and BookCorpus). We support two data formats:

  • For wiki, a tag starts a new article and a ends it.
  • For BookCorpus, we process an already-tokenized file where tokens are separated by whitespaces. Newlines stands for a new book.
Command for creating the pretraining data

This command takes as input a set of files ($INPUT_PATTERN) and creates a tensorized dataset for pretraining. It supports the following masking schemes:

Command for creating the data for Splinter (recurring span selection)
cd pretraining
python create_pretraining_data.py \
    --input_file=$INPUT_PATTERN \
    --output_dir=$OUTPUT_DIR \
    --vocab_file=vocabs/bert-cased-vocab.txt \
    --do_lower_case=False \
    --do_whole_word_mask=False \
    --max_seq_length=512 \
    --num_processes=63 \
    --dupe_factor=5 \
    --max_span_length=10 \
    --recurring_span_selection=True \
    --only_recurring_span_selection=True \
    --max_questions_per_seq=30

n-gram statistics are written to ngrams.txt in the output directory.

Command for pretraining Splinter
cd pretraining
python run_pretraining.py \
    --bert_config_file=configs/bert-base-cased-config.json \
    --input_file=$INPUT_FILE \
    --output_dir=$OUTPUT_DIR \
    --max_seq_length=512 \
    --recurring_span_selection=True \
    --only_recurring_span_selection=True \
    --max_questions_per_seq=30 \
    --do_train \
    --train_batch_size=256 \
    --learning_rate=1e-4 \
    --num_train_steps=2400000 \
    --num_warmup_steps=10000 \
    --save_checkpoints_steps=10000 \
    --keep_checkpoint_max=240 \
    --use_tpu \
    --num_tpu_cores=8 \
    --tpu_name=$TPU_NAME

This can be trained using GPUs by dropping the use_tpu flag (although it was tested mainly on TPUs).

Convert TensorFlow Model to PyTorch

In order to fine-tune the TF model you pretrained with run_pretraining.py, you will first need to convert it to PyTorch. You can do so by

cd model_conversion
pip install -r requirements.txt
python convert_tf_to_pytorch.py --tf_checkpoint_path $TF_MODEL_PATH --pytorch_dump_path $OUTPUT_PATH

Fine-tuning

Fine-tuning has different requirements than pretraining, as it uses HuggingFace's Transformers library. Create a virtual environment and execute

cd finetuning
pip install -r requirements.txt

Please Note: If you want to reproduce results from the paper or run with a QASS head in genral, questions need to be augmented with a [QUESTION] token. In order to do so, please run

cd finetuning
python qass_preprocess.py --path "../mrqa-few-shot/*/*.jsonl"

This will add a [MASK] token to each question in the training data, which will later be replaced by a [QUESTION] token automatically by the QASS layer implementation.

Then fine-tune Splinter by

cd finetuning
export MODEL="../splinter"
export OUTPUT_DIR="output"
python run_mrqa.py \
    --model_type=bert \
    --model_name_or_path=$MODEL \
    --qass_head=True \
    --tokenizer_name=$MODEL \
    --output_dir=$OUTPUT_DIR \
    --train_file="../mrqa-few-shot/squad/squad-train-seed-42-num-examples-16_qass.jsonl" \
    --predict_file="../mrqa-few-shot/squad/dev_qass.jsonl" \
    --do_train \
    --do_eval \
    --max_seq_length=384 \
    --doc_stride=128 \
    --threads=4 \
    --save_steps=50000 \
    --per_gpu_train_batch_size=12 \
    --per_gpu_eval_batch_size=16 \
    --learning_rate=3e-5 \
    --max_answer_length=10 \
    --warmup_ratio=0.1 \
    --min_steps=200 \
    --num_train_epochs=10 \
    --seed=42 \
    --use_cache=False \
    --evaluate_every_epoch=False 

In order to train with automatic mixed precision, install apex and add the --fp16 flag.

See an example script for fine-tuning SpanBERT (rather than Splinter) here.

Citation

If you find this work helpful, please cite us

@inproceedings{ram-etal-2021-shot,
    title = "Few-Shot Question Answering by Pretraining Span Selection",
    author = "Ram, Ori  and
      Kirstain, Yuval  and
      Berant, Jonathan  and
      Globerson, Amir  and
      Levy, Omer",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.239",
    pages = "3066--3079",
}

Acknowledgements

We would like to thank the European Research Council (ERC) for funding the project, and to Google’s TPU Research Cloud (TRC) for their support in providing TPUs.

Owner
Ori Ram
PhD Candidate at Tel Aviv University, focusing on NLP and Machine Learning
Ori Ram
Nested Named Entity Recognition for Chinese Biomedical Text

CBio-NAMER CBioNAMER (Nested nAMed Entity Recognition for Chinese Biomedical Text) is our method used in CBLUE (Chinese Biomedical Language Understand

8 Dec 25, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.

This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi

Aarif Munwar Jahan 2 Jan 04, 2023
PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit. It provides easy-to-use, low-overhead, first-class Python wrappers for t

922 Dec 31, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Dec 30, 2022
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022
A Plover python dictionary allowing for consistent symbol input with specification of attachment and capitalisation in one stroke.

Emily's Symbol Dictionary Design This dictionary was created with the following goals in mind: Have a consistent method to type (pretty much) every sy

Emily 68 Jan 07, 2023
Tool to check whether a GCP bucket is public or not.

Tool to check publicly accessible GCP bucket. Blog https://justm0rph3u5.medium.com/gcp-inspector-auditing-publicly-exposed-gcp-bucket-ac6cad55618c Wha

DIVYANSHU SHUKLA 7 Nov 24, 2022
多语言降噪预训练模型MBart的中文生成任务

mbart-chinese 基于mbart-large-cc25 的中文生成任务 Input source input: text + /s + lang_code target input: lang_code + text + /s Usage token_ids_mapping.jso

11 Sep 19, 2022
A music comments dataset, containing 39,051 comments for 27,384 songs.

Music Comments Dataset A music comments dataset, containing 39,051 comments for 27,384 songs. For academic research use only. Introduction This datase

Zhang Yixiao 2 Jan 10, 2022
A Paper List for Speech Translation

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

138 Dec 24, 2022
Automated question generation and question answering from Turkish texts using text-to-text transformers

Turkish Question Generation Offical source code for "Automated question generation & question answering from Turkish texts using text-to-text transfor

Open Business Software Solutions 29 Dec 14, 2022
Creating a Feed of MISP Events from ThreatFox (by abuse.ch)

ThreatFox2Misp Creating a Feed of MISP Events from ThreatFox (by abuse.ch) What will it do? This will fetch IOCs from ThreatFox by Abuse.ch, convert t

17 Nov 22, 2022
Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

PythonTextObfuscator Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Requi

2 Aug 29, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
使用pytorch+transformers复现了SimCSE论文中的有监督训练和无监督训练方法

SimCSE复现 项目描述 SimCSE是一种简单但是很巧妙的NLP对比学习方法,创新性地引入Dropout的方式,对样本添加噪声,从而达到对正样本增强的目的。 该框架的训练目的为:对于batch中的每个样本,拉近其与正样本之间的距离,拉远其与负样本之间的距离,使得模型能够在大规模无监督语料(也可以

58 Dec 20, 2022
Maha is a text processing library specially developed to deal with Arabic text.

An Arabic text processing library intended for use in NLP applications Maha is a text processing library specially developed to deal with Arabic text.

Mohammad Al-Fetyani 184 Nov 27, 2022
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.

RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB

106 Nov 28, 2022