A notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository

Overview

IITB-English-Hindi Parallel Corpus

GitHub issues GitHub forks GitHub stars License: CC BY-NC 4.0

About

We provide a notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository. The notebook also shows how to segment the corpus using BPE tokenization which can be used to train an English-Hindi MT System.

The IIT Bombay English-Hindi corpus contains parallel corpus for English-Hindi as well as monolingual Hindi corpus collected from a variety of existing sources and corpora developed at the Center for Indian Language Technology, IIT Bombay over the years. This page describes the corpus. This corpus has been used at the Workshop on Asian Language Translation Shared Task since 2016 the Hindi-to-English and English-to-Hindi languages pairs and as a pivot language pair for the Hindi-to-Japanese and Japanese-to-Hindi language pairs.

The complete details of this corpus are available at this URL. We also provide this parallel corpus via browser download from the same URL. We also provide a monolingual Hindi corpus on the same URL.

Recent Updates

  • Version 3.1 - December 2021 - Added 49,400 sentence pairs to the parallel corpus.
  • Version 3.0 - August 2020 - Added ~47,000 sentence pairs to the parallel corpus.

Usage

You should have the 'datasets' packages installed to be able to use the 🚀 HuggingFace datasets repository. Please use the following command and install via pip:

   pip install dataasets

In the notebook, we also provide the code to create Byte-pair encoding segmented version of this corpus. You can choose to tokenize it the way shown in the notebook, or use any other tokenization which also supports the Hindi language.

Other

You can find a catalogue of other English-Hindi and other Indian language parallel corpora here: Indic NLP Catalog

Citation

If you use this corpus or its derivate resources for your research, kindly cite it as follows: Anoop Kunchukuttan, Pratik Mehta, Pushpak Bhattacharyya. The IIT Bombay English-Hindi Parallel Corpus. Language Resources and Evaluation Conference. 2018.

BiBTeX Citation

@inproceedings{kunchukuttan-etal-2018-iit,
    title = "The {IIT} {B}ombay {E}nglish-{H}indi Parallel Corpus",
    author = "Kunchukuttan, Anoop  and
      Mehta, Pratik  and
      Bhattacharyya, Pushpak",
    booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
    month = may,
    year = "2018",
    address = "Miyazaki, Japan",
    publisher = "European Language Resources Association (ELRA)",
    url = "https://aclanthology.org/L18-1548",
}
Owner
Computation for Indian Language Technology (CFILT)
NLP Resources and Codebases released by the 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐼𝑛𝑑𝑖𝑎𝑛 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 𝐿𝑎𝑏 @ 𝐼𝐼𝑇 𝐵𝑜𝑚𝑏𝑎𝑦
Computation for Indian Language Technology (CFILT)
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper

Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont

44 Dec 31, 2022
Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation (SIGGRAPH Asia 2021)

Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation This repository contains the implementation of the following paper: Live Speech

OldSix 575 Dec 31, 2022
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
Lyrics generation with GPT2-based Transformer

HuggingArtists - Train a model to generate lyrics Create AI-Artist in just 5 minutes! 🚀 Run the demo notebook to train 🚀 Run the GUI demo to test Di

Aleksey Korshuk 65 Dec 19, 2022
Neural network sequence labeling model

Sequence labeler This is a neural network sequence labeling system. Given a sequence of tokens, it will learn to assign labels to each token. Can be u

Marek Rei 250 Nov 03, 2022
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.

Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo

Kshitij Ambilduke 8 Apr 14, 2022
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
基于pytorch_rnn的古诗词生成

pytorch_peot_rnn 基于pytorch_rnn的古诗词生成 说明 config.py里面含有训练、测试、预测的参数,更改后运行: python main.py 预测结果 if config.do_predict: result = trainer.generate('丽日照残春')

西西嘛呦 3 May 26, 2022
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
Finding Label and Model Errors in Perception Data With Learned Observation Assertions

Finding Label and Model Errors in Perception Data With Learned Observation Assertions This is the project page for Finding Label and Model Errors in P

Stanford Future Data Systems 17 Oct 14, 2022
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Tutorial to pretrain & fine-tune a 🤗 Flax T5 model on a TPUv3-8 with GCP

Pretrain and Fine-tune a T5 model with Flax on GCP This tutorial details how pretrain and fine-tune a FlaxT5 model from HuggingFace using a TPU VM ava

Gabriele Sarti 41 Nov 18, 2022