Pretrained Japanese BERT models

Overview

Pretrained Japanese BERT models

This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face.

For information on the previous versions of our pretrained models, see the v1.0 tag of this repository.

Model Architecture

The architecture of our models are the same as the original BERT models proposed by Google.

  • BERT-base models consist of 12 layers, 768 dimensions of hidden states, and 12 attention heads.
  • BERT-large models consist of 24 layers, 1024 dimensions of hidden states, and 16 attention heads.

Training Data

The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Wikipedia Cirrussearch dump file as of August 31, 2020.

The generated corpus files are 4.0GB in total, consisting of approximately 30M sentences. We used the MeCab morphological parser with mecab-ipadic-NEologd dictionary to split texts into sentences.

$WORK_DIR/corpus/jawiki-20200831/corpus_sampled.txt">
$ WORK_DIR="$HOME/work/bert-japanese"

$ python make_corpus_wiki.py \
--input_file jawiki-20200831-cirrussearch-content.json.gz \
--output_file $WORK_DIR/corpus/jawiki-20200831/corpus.txt \
--min_text_length 10 \
--max_text_length 200 \
--mecab_option "-r $HOME/local/etc/mecabrc -d $HOME/local/lib/mecab/dic/mecab-ipadic-neologd-v0.0.7"

# Split corpus files for parallel preprocessing of the files
$ python merge_split_corpora.py \
--input_files $WORK_DIR/corpus/jawiki-20200831/corpus.txt \
--output_dir $WORK_DIR/corpus/jawiki-20200831 \
--num_files 8

# Sample some lines for training tokenizers
$ cat $WORK_DIR/corpus/jawiki-20200831/corpus.txt|grep -v '^$'|shuf|head -n 1000000 \
> $WORK_DIR/corpus/jawiki-20200831/corpus_sampled.txt

Tokenization

For each of BERT-base and BERT-large, we provide two models with different tokenization methods.

  • For wordpiece models, the texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768.
  • For character models, the texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into characters. The vocabulary size is 6144.

We used fugashi and unidic-lite packages for the tokenization.

$WORK_DIR/tokenizers/jawiki-20200831/character/vocab.txt">
$ WORK_DIR="$HOME/work/bert-japanese"

# WordPiece (unidic_lite)
$ TOKENIZERS_PARALLELISM=false python train_tokenizer.py \
--input_files $WORK_DIR/corpus/jawiki-20200831/corpus_sampled.txt \
--output_dir $WORK_DIR/tokenizers/jawiki-20200831/wordpiece_unidic_lite \
--tokenizer_type wordpiece \
--mecab_dic_type unidic_lite \
--vocab_size 32768 \
--limit_alphabet 6129 \
--num_unused_tokens 10

# Character
$ head -n 6144 $WORK_DIR/tokenizers/jawiki-20200831/wordpiece_unidic_lite/vocab.txt \
> $WORK_DIR/tokenizers/jawiki-20200831/character/vocab.txt

Training

The models are trained with the same configuration as the original BERT; 512 tokens per instance, 256 instances per batch, and 1M training steps. For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once.

For training of each model, we used a v3-8 instance of Cloud TPUs provided by TensorFlow Research Cloud program. The training took about 5 days and 14 days for BERT-base and BERT-large models, respectively.

Creation of the pretraining data

$ WORK_DIR="$HOME/work/bert-japanese"

# WordPiece (unidic_lite)
$ mkdir -p $WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data
# It takes 3h and 420GB RAM, producing 43M instances
$ seq -f %02g 1 8|xargs -L 1 -I {} -P 8 python create_pretraining_data.py \
--input_file $WORK_DIR/corpus/jawiki-20200831/corpus_{}.txt \
--output_file $WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data/pretraining_data_{}.tfrecord.gz \
--vocab_file $WORK_DIR/tokenizers/jawiki-20200831/wordpiece_unidic_lite/vocab.txt \
--tokenizer_type wordpiece \
--mecab_dic_type unidic_lite \
--do_whole_word_mask \
--gzip_compress \
--max_seq_length 512 \
--max_predictions_per_seq 80 \
--dupe_factor 10

# Character
$ mkdir $WORK_DIR/bert/jawiki-20200831/character/pretraining_data
# It takes 4h10m and 615GB RAM, producing 55M instances
$ seq -f %02g 1 8|xargs -L 1 -I {} -P 8 python create_pretraining_data.py \
--input_file $WORK_DIR/corpus/jawiki-20200831/corpus_{}.txt \
--output_file $WORK_DIR/bert/jawiki-20200831/character/pretraining_data/pretraining_data_{}.tfrecord.gz \
--vocab_file $WORK_DIR/tokenizers/jawiki-20200831/character/vocab.txt \
--tokenizer_type character \
--mecab_dic_type unidic_lite \
--do_whole_word_mask \
--gzip_compress \
--max_seq_length 512 \
--max_predictions_per_seq 80 \
--dupe_factor 10

Training of the models

Note: all the necessary files need to be stored in a Google Cloud Storage (GCS) bucket.

# BERT-base, WordPiece (unidic_lite)
$ ctpu up -name tpu01 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-base" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-base/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=1e-4 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu01

# BERT-base, Character
$ ctpu up -name tpu02 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/character/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/character/bert-base" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/character/bert-base/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=1e-4 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu02

# BERT-large, WordPiece (unidic_lite)
$ ctpu up -name tpu03 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-large" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-large/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=5e-5 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu03

# BERT-large, Character
$ ctpu up -name tpu04 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/character/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/character/bert-large" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/character/bert-large/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=5e-5 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu04

Licenses

The pretrained models are distributed under the terms of the Creative Commons Attribution-ShareAlike 3.0.

The codes in this repository are distributed under the Apache License 2.0.

Related Work

Acknowledgments

The models are trained with Cloud TPUs provided by TensorFlow Research Cloud program.

Owner
Inui Laboratory
Inui Laboratory, Tohoku University
Inui Laboratory
Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.

Welcome to Healthsea ✨ Create better access to health with spaCy. Healthsea is a pipeline for analyzing user reviews to supplement products by extract

Explosion 75 Dec 19, 2022
GSoC'2021 | TensorFlow implementation of Wav2Vec2

GSoC'2021 | TensorFlow implementation of Wav2Vec2

Vasudev Gupta 73 Nov 28, 2022
PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of

Sontag Lab 39 Nov 14, 2022
Kinky furry assitant based on GPT2

KinkyFurs-V0 Kinky furry assistant based on GPT2 How to run python3 V0.py then, open web browser and go to localhost:8080 Requirements: Flask trans

Sparki 1 Jun 11, 2022
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
Must-read papers on improving efficiency for pre-trained language models.

Must-read papers on improving efficiency for pre-trained language models.

Tobias Lee 89 Jan 03, 2023
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Diaformer Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022) Diaformer is an efficient model for automatic diagnosis via symp

Junying Chen 20 Dec 13, 2022
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023
In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Making Emojis More Predictable by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad

Karanjot Singh 2 Jan 17, 2022
문장단위로 분절된 나무위키 데이터셋. Releases에서 다운로드 받거나, tfds-korean을 통해 다운로드 받으세요.

Namuwiki corpus 문장단위로 미리 분절된 나무위키 코퍼스. 목적이 LM등에서 사용하기 위한 데이터셋이라, 링크/이미지/테이블 등등이 잘려있습니다. 문장 단위 분절은 kss를 활용하였습니다. 라이선스는 나무위키에 명시된 바와 같이 CC BY-NC-SA 2.0

Jeong Ukjae 16 Apr 02, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023