Pretrained Japanese BERT models

Overview

Pretrained Japanese BERT models

This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face.

For information on the previous versions of our pretrained models, see the v1.0 tag of this repository.

Model Architecture

The architecture of our models are the same as the original BERT models proposed by Google.

  • BERT-base models consist of 12 layers, 768 dimensions of hidden states, and 12 attention heads.
  • BERT-large models consist of 24 layers, 1024 dimensions of hidden states, and 16 attention heads.

Training Data

The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Wikipedia Cirrussearch dump file as of August 31, 2020.

The generated corpus files are 4.0GB in total, consisting of approximately 30M sentences. We used the MeCab morphological parser with mecab-ipadic-NEologd dictionary to split texts into sentences.

$WORK_DIR/corpus/jawiki-20200831/corpus_sampled.txt">
$ WORK_DIR="$HOME/work/bert-japanese"

$ python make_corpus_wiki.py \
--input_file jawiki-20200831-cirrussearch-content.json.gz \
--output_file $WORK_DIR/corpus/jawiki-20200831/corpus.txt \
--min_text_length 10 \
--max_text_length 200 \
--mecab_option "-r $HOME/local/etc/mecabrc -d $HOME/local/lib/mecab/dic/mecab-ipadic-neologd-v0.0.7"

# Split corpus files for parallel preprocessing of the files
$ python merge_split_corpora.py \
--input_files $WORK_DIR/corpus/jawiki-20200831/corpus.txt \
--output_dir $WORK_DIR/corpus/jawiki-20200831 \
--num_files 8

# Sample some lines for training tokenizers
$ cat $WORK_DIR/corpus/jawiki-20200831/corpus.txt|grep -v '^$'|shuf|head -n 1000000 \
> $WORK_DIR/corpus/jawiki-20200831/corpus_sampled.txt

Tokenization

For each of BERT-base and BERT-large, we provide two models with different tokenization methods.

  • For wordpiece models, the texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768.
  • For character models, the texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into characters. The vocabulary size is 6144.

We used fugashi and unidic-lite packages for the tokenization.

$WORK_DIR/tokenizers/jawiki-20200831/character/vocab.txt">
$ WORK_DIR="$HOME/work/bert-japanese"

# WordPiece (unidic_lite)
$ TOKENIZERS_PARALLELISM=false python train_tokenizer.py \
--input_files $WORK_DIR/corpus/jawiki-20200831/corpus_sampled.txt \
--output_dir $WORK_DIR/tokenizers/jawiki-20200831/wordpiece_unidic_lite \
--tokenizer_type wordpiece \
--mecab_dic_type unidic_lite \
--vocab_size 32768 \
--limit_alphabet 6129 \
--num_unused_tokens 10

# Character
$ head -n 6144 $WORK_DIR/tokenizers/jawiki-20200831/wordpiece_unidic_lite/vocab.txt \
> $WORK_DIR/tokenizers/jawiki-20200831/character/vocab.txt

Training

The models are trained with the same configuration as the original BERT; 512 tokens per instance, 256 instances per batch, and 1M training steps. For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once.

For training of each model, we used a v3-8 instance of Cloud TPUs provided by TensorFlow Research Cloud program. The training took about 5 days and 14 days for BERT-base and BERT-large models, respectively.

Creation of the pretraining data

$ WORK_DIR="$HOME/work/bert-japanese"

# WordPiece (unidic_lite)
$ mkdir -p $WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data
# It takes 3h and 420GB RAM, producing 43M instances
$ seq -f %02g 1 8|xargs -L 1 -I {} -P 8 python create_pretraining_data.py \
--input_file $WORK_DIR/corpus/jawiki-20200831/corpus_{}.txt \
--output_file $WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data/pretraining_data_{}.tfrecord.gz \
--vocab_file $WORK_DIR/tokenizers/jawiki-20200831/wordpiece_unidic_lite/vocab.txt \
--tokenizer_type wordpiece \
--mecab_dic_type unidic_lite \
--do_whole_word_mask \
--gzip_compress \
--max_seq_length 512 \
--max_predictions_per_seq 80 \
--dupe_factor 10

# Character
$ mkdir $WORK_DIR/bert/jawiki-20200831/character/pretraining_data
# It takes 4h10m and 615GB RAM, producing 55M instances
$ seq -f %02g 1 8|xargs -L 1 -I {} -P 8 python create_pretraining_data.py \
--input_file $WORK_DIR/corpus/jawiki-20200831/corpus_{}.txt \
--output_file $WORK_DIR/bert/jawiki-20200831/character/pretraining_data/pretraining_data_{}.tfrecord.gz \
--vocab_file $WORK_DIR/tokenizers/jawiki-20200831/character/vocab.txt \
--tokenizer_type character \
--mecab_dic_type unidic_lite \
--do_whole_word_mask \
--gzip_compress \
--max_seq_length 512 \
--max_predictions_per_seq 80 \
--dupe_factor 10

Training of the models

Note: all the necessary files need to be stored in a Google Cloud Storage (GCS) bucket.

# BERT-base, WordPiece (unidic_lite)
$ ctpu up -name tpu01 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-base" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-base/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=1e-4 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu01

# BERT-base, Character
$ ctpu up -name tpu02 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/character/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/character/bert-base" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/character/bert-base/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=1e-4 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu02

# BERT-large, WordPiece (unidic_lite)
$ ctpu up -name tpu03 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-large" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/wordpiece_unidic_lite/bert-large/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=5e-5 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu03

# BERT-large, Character
$ ctpu up -name tpu04 -tpu-size v3-8 -tf-version 2.3
$ cd /usr/share/models
$ sudo pip3 install -r official/requirements.txt
$ tmux
$ export PYTHONPATH="$PYTHONPATH:/usr/share/tpu/models"
$ WORK_DIR="gs://
   
    /bert-japanese
    "
   
$ python3 official/nlp/bert/run_pretraining.py \
--input_files="$WORK_DIR/bert/jawiki-20200831/character/pretraining_data/pretraining_data_*.tfrecord" \
--model_dir="$WORK_DIR/bert/jawiki-20200831/character/bert-large" \
--bert_config_file="$WORK_DIR/bert/jawiki-20200831/character/bert-large/config.json" \
--max_seq_length=512 \
--max_predictions_per_seq=80 \
--train_batch_size=256 \
--learning_rate=5e-5 \
--num_train_epochs=100 \
--num_steps_per_epoch=10000 \
--optimizer_type=adamw \
--warmup_steps=10000 \
--distribution_strategy=tpu \
--tpu=tpu04

Licenses

The pretrained models are distributed under the terms of the Creative Commons Attribution-ShareAlike 3.0.

The codes in this repository are distributed under the Apache License 2.0.

Related Work

Acknowledgments

The models are trained with Cloud TPUs provided by TensorFlow Research Cloud program.

Owner
Inui Laboratory
Inui Laboratory, Tohoku University
Inui Laboratory
A Python script which randomly chooses and prints a file from a directory.

___ ____ ____ _ __ ___ / _ \ | _ \ | _ \ ___ _ __ | '__| / _ \ | |_| || | | || | | | / _ \| '__| | | | __/ | _ || |_| || |_| || __

yesmaybenookay 0 Aug 06, 2021
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
🤕 spelling exceptions builder for lazy people

🤕 spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Wojciech Muła 763 Dec 27, 2022
Text preprocessing, representation and visualization from zero to hero.

Text preprocessing, representation and visualization from zero to hero. From zero to hero • Installation • Getting Started • Examples • API • FAQ • Co

Jonathan Besomi 2.7k Jan 08, 2023
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
MMDA - multimodal document analysis

MMDA - multimodal document analysis

AI2 75 Jan 04, 2023
A fast and lightweight python-based CTC beam search decoder for speech recognition.

pyctcdecode A fast and feature-rich CTC beam search decoder for speech recognition written in Python, providing n-gram (kenlm) language model support

Kensho 315 Dec 21, 2022
CLIPfa: Connecting Farsi Text and Images

CLIPfa: Connecting Farsi Text and Images OpenAI released the paper Learning Transferable Visual Models From Natural Language Supervision in which they

Sajjad Ayoubi 66 Dec 14, 2022
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised

Google Research 1.4k Dec 22, 2022
A minimal Conformer ASR implementation adapted from ESPnet.

Conformer ASR A minimal Conformer ASR implementation adapted from ESPnet. Introduction I want to use the pre-trained English ASR model provided by ESP

Niu Zhe 3 Jan 24, 2022
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

Antlr Project 13.6k Jan 05, 2023
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classifi

186 Dec 24, 2022
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 03, 2023
本插件是pcrjjc插件的重置版,可以独立于后端api运行

pcrjjc2 本插件是pcrjjc重置版,不需要使用其他后端api,但是需要自行配置客户端 本项目基于AGPL v3协议开源,由于项目特殊性,禁止基于本项目的任何商业行为 配置方法 环境需求:.net framework 4.5及以上 jre8 别忘了装jre8 别忘了装jre8 别忘了装jre8

132 Dec 26, 2022
Estimation of the CEFR complexity score of a given word, sentence or text.

NLP-Swedish … allows to estimate CEFR (Common European Framework of References) complexity score of a given word, sentence or text. CEFR scores come f

3 Apr 30, 2022
TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech

TFPNER TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech Named entity recognition (NER), which aims at identifyin

1 Feb 07, 2022
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022