Multispeaker & Emotional TTS based on Tacotron 2 and Waveglow

Overview

Multispeaker & Emotional TTS based on Tacotron 2 and Waveglow

Table of Contents

General description

This Repository contains a sample code for Tacotron 2, WaveGlow with multi-speaker, emotion embeddings together with a script for data preprocessing.
Checkpoints and code originate from following sources:

Done:

  • took all the best code parts from all of the 5 sources above
  • clean the code and fixed some of the mistakes
  • change code structure
  • add multi-speaker and emotion embendings
  • add preprocessing
  • move all the configs from command line args into experiment config file under configs/experiments folder
  • add restoring / checkpointing mechanism
  • add tensorboard
  • make decoder work with n > 1 frames per step
  • make training work at FP16

TODO:

  • make it work with pytorch-1.4.0
  • add multi-spot instance training for AWS

Getting Started

The following section lists the requirements in order to start training the Tacotron 2 and WaveGlow models.

Clone the repository:

git clone https://github.com/ide8/tacotron2  
cd tacotron2
PROJDIR=$(pwd)
export PYTHONPATH=$PROJDIR:$PYTHONPATH

Requirements

This repository contains Dockerfile which extends the PyTorch NGC container and encapsulates some dependencies. Aside from these dependencies, ensure you have the following components:

Setup

Build an image from Docker file:

docker build --tag taco .

Run docker container:

docker run --shm-size=8G --runtime=nvidia -v /absolute/path/to/your/code:/app -v /absolute/path/to/your/training_data:/mnt/train -v /absolute/path/to/your/logs:/mnt/logs -v /absolute/path/to/your/raw-data:/mnt/raw-data -v /absolute/path/to/your/pretrained-checkpoint:/mnt/pretrained -detach taco sleep inf

Check container id:

docker ps

Select container id of image with tag taco and log into container with:

docker exec -it container_id bash

Code structure description

Folders tacotron2 and waveglow have scripts for Tacotron 2, WaveGlow models and consist of:

  • /model.py - model architecture
  • /data_function.py - data loading functions
  • /loss_function.py - loss function

Folder common contains common layers for both models (common/layers.py), utils (common/utils.py) and audio processing (common/audio_processing.py and common/stft.py).

Folder router is used by training script to select an appropriate model

In the root directory:

  • train.py - script for model training
  • preprocess.py - performs audio processing and creates training and validation datasets
  • inference.ipynb - notebook for running inference

Folder configs contains __init__.py with all parameters needed for training and data processing. Folder configs/experiments consists of all the experiments. waveglow.py and tacotron2.py are provided as examples for WaveGlow and Tacotron 2. On training or data processing start, parameters are copied from your experiment (in our case - from waveglow.py or from tacotron2.py) to __init__.py, from which they are used by the system.

Data preprocessing

Preparing for data preprocessing

  1. For each speaker you have to have a folder named with speaker name, containing wavs folder and metadata.csv file with the next line format: file_name.wav|text.
  2. All necessary parameters for preprocessing should be set in configs/experiments/waveglow.py or in configs/experiments/tacotron2.py, in the class PreprocessingConfig.
  3. If you're running preprocessing first time, set start_from_preprocessed flag to False. preprocess.py performs trimming of audio files up to PreprocessingConfig.top_db (cuts the silence in the beginning and the end), applies ffmpeg command in order to mono, make same sampling rate and bit rate for all the wavs in dataset.
  4. It saves a folder wavs with processed audio files and data.csv file in PreprocessingConfig.output_directory with the following format: path|text|speaker_name|speaker_id|emotion|text_len|duration.
  5. Trimming and ffmpeg command are applied only to speakers, for which flag process_audio is True. Speakers with flag emotion_present is False, are treated as with emotion neutral-normal.
  6. You won't need start_from_preprocessed = False once you finish running preprocessing script. Only exception in case of new raw data comes in.
  7. Once start_from_preprocessed is set to True, script loads file data.csv (created by the start_from_preprocessed = False run), and forms train.txt and val.txt out from data.csv.
  8. Main PreprocessingConfig parameters:
    1. cpus - defines number of cores for batch generator
    2. sr - defines sample ratio for reading and writing audio
    3. emo_id_map - dictionary for emotion name to emotion_id mapping
    4. data[{'path'}] - is path to folder named with speaker name and containing wavs folder and metadata.csv with the following line format: file_name.wav|text|emotion (optional)
  9. Preprocessing script forms training and validation datasets in the following way:
    1. selects rows with audio duration and text length less or equal those for speaker PreprocessingConfig.limit_by (this step is needed for proper batch size)
    2. if such speaker is not present, than it selects rows within PreprocessingConfig.text_limit and PreprocessingConfig.dur_limit. Lower limit for audio is defined by PreprocessingConfig.minimum_viable_dur
    3. in order to be able to use the same batch size as NVIDIA guys, set PreprocessingConfig.text_limit to linda_jonson
    4. splits dataset randomly by ratio train : val = 0.95 : 0.05
    5. if speaker train set is bigger than PreprocessingConfig.n - samples n rows
    6. saves train.txt and val.txt to PreprocessingConfig.output_directory
    7. saves emotion_coefficients.json and speaker_coefficients.json with coefficients for loss balancing (used by train.py).

Run preprocessing

Since both scripts waveglow.py and tacotron2.py contain the class PreprocessingConfig, training and validation dataset can be produced by running any of them:

python preprocess.py --exp tacotron2

or

python preprocess.py --exp waveglow

Training

Preparing for training

Tacotron 2

In configs/experiment/tacotron2.py, in the class Config set:

  1. training_files and validation_files - paths to train.txt, val.txt;
  2. tacotron_checkpoint - path to pretrained Tacotron 2 if it exist (we were able to restore Waveglow from Nvidia, but Tacotron 2 code was edited to add speakers and emotions, so Tacotron 2 needs to be trained from scratch);
  3. speaker_coefficients - path to speaker_coefficients.json;
  4. emotion_coefficients - path to emotion_coefficients.json;
  5. output_directory - path for writing logs and checkpoints;
  6. use_emotions - flag indicating emotions usage;
  7. use_loss_coefficients - flag indicating loss scaling due to possible data disbalance in terms of both speakers and emotions; for balancing loss, set paths to jsons with coefficients in emotion_coefficients and speaker_coefficients;
  8. model_name - "Tacotron2".
  • Launch training
    • Single gpu:
      python train.py --exp tacotron2
      
    • Multigpu training:
      python -m multiproc train.py --exp tacotron2
      

WaveGlow:

In configs/experiment/waveglow.py, in the class Config set:

  1. training_files and validation_files - paths to train.txt, val.txt;
  2. waveglow_checkpoint - path to pretrained Waveglow, restored from Nvidia. Download checkopoint.
  3. output_directory - path for writing logs and checkpoints;
  4. use_emotions - False;
  5. use_loss_coefficients - False;
  6. model_name - "WaveGlow".
  • Launch training
    • Single gpu:
      python train.py --exp waveglow
      
    • Multigpu training:
      python -m multiproc train.py --exp waveglow
      

Running Tensorboard

Once you made your model start training, you might want to see some progress of training:

docker ps

Select container id of image with tag taco and run:

docker exec -it container_id bash

Start Tensorboard:

 tensorboard --logdir=path_to_folder_with_logs --host=0.0.0.0

Loss is being written into tensorboard:

Tensorboard Scalars

Audio samples together with attention alignments are saved into tensorbaord each Config.epochs_per_checkpoint. Transcripts for audios are listed in Config.phrases

Tensorboard Audio

Inference

Running inference with the inference.ipynb notebook.

Run Jupyter Notebook:

jupyter notebook --ip 0.0.0.0 --port 6006 --no-browser --allow-root

output:

[email protected]:/app# jupyter notebook --ip 0.0.0.0 --port 6006 --no-browser --allow-root
[I 09:31:25.393 NotebookApp] JupyterLab extension loaded from /opt/conda/lib/python3.6/site-packages/jupyterlab
[I 09:31:25.393 NotebookApp] JupyterLab application directory is /opt/conda/share/jupyter/lab
[I 09:31:25.395 NotebookApp] Serving notebooks from local directory: /app
[I 09:31:25.395 NotebookApp] The Jupyter Notebook is running at:
[I 09:31:25.395 NotebookApp] http://(04096a19c266 or 127.0.0.1):6006/?token=bbd413aef225c1394be3b9de144242075e651bea937eecce
[I 09:31:25.395 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 09:31:25.398 NotebookApp] 
    
    To access the notebook, open this file in a browser:
        file:///root/.local/share/jupyter/runtime/nbserver-15398-open.html
    Or copy and paste one of these URLs:
        http://(04096a19c266 or 127.0.0.1):6006/?token=bbd413aef225c1394be3b9de144242075e651bea937eecce

Select adress with 127.0.0.1 and put it in the browser. In this case: http://127.0.0.1:6006/?token=bbd413aef225c1394be3b9de144242075e651bea937eecce

This script takes text as input and runs Tacotron 2 and then WaveGlow inference to produce an audio file. It requires pre-trained checkpoints from Tacotron 2 and WaveGlow models, input text, speaker_id and emotion_id.

Change paths to checkpoints of pretrained Tacotron 2 and WaveGlow in the cell [2] of the inference.ipynb.
Write a text to be displayed in the cell [7] of the inference.ipynb.

Parameters

In this section, we list the most important hyperparameters, together with their default values that are used to train Tacotron 2 and WaveGlow models.

Shared parameters

  • epochs - number of epochs (Tacotron 2: 1501, WaveGlow: 1001)
  • learning-rate - learning rate (Tacotron 2: 1e-3, WaveGlow: 1e-4)
  • batch-size - batch size (Tacotron 2: 64, WaveGlow: 11)
  • grad_clip_thresh - gradient clipping treshold (0.1)

Shared audio/STFT parameters

  • sampling-rate - sampling rate in Hz of input and output audio (22050)
  • filter-length - (1024)
  • hop-length - hop length for FFT, i.e., sample stride between consecutive FFTs (256)
  • win-length - window size for FFT (1024)
  • mel-fmin - lowest frequency in Hz (0.0)
  • mel-fmax - highest frequency in Hz (8.000)

Tacotron parameters

  • anneal-steps - epochs at which to anneal the learning rate (500/ 1000/ 1500)
  • anneal-factor - factor by which to anneal the learning rate (0.1) These two parameters are used to change learning rate at the points defined in anneal-steps according to:
    learning_rate = learning_rate * ( anneal_factor ** p),
    where p = 0 at the first step and increments by 1 each step.

WaveGlow parameters

  • segment-length - segment length of input audio processed by the neural network (8000). Before passing to input, audio is padded or croped to segment-length.
  • wn_config - dictionary with parameters of affine coupling layers. Contains n_layers, n_chanels, kernel_size.

Contributing

If you've ever wanted to contribute to open source, and a great cause, now is your chance!

See the contributing docs for more information

Owner
Ivan Didur
CTO at data root labs
Ivan Didur
American Sign Language (ASL) to Text Converter

Signterpreter American Sign Language (ASL) to Text Converter Recommendations Although there is grayscale and gaussian blur, we recommend that you use

0 Feb 20, 2022
A notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository

We provide a notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository. The notebook also shows how to segment the corpus using BPE tokenizatio

Computation for Indian Language Technology (CFILT) 9 Oct 13, 2022
👄 The most accurate natural language detection library for Python, suitable for long and short text alike

1. What does this library do? Its task is simple: It tells you which language some provided textual data is written in. This is very useful as a prepr

Peter M. Stahl 334 Dec 30, 2022
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

775 Dec 24, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Bloomberg 8 Nov 09, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Expressions.

patterns-finder Simple, Fast, Powerful and Easily extensible python package for extracting patterns from text, with over than 60 predefined Regular Ex

22 Dec 19, 2022
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
Adversarial Examples for Extreme Multilabel Text Classification

Adversarial Examples for Extreme Multilabel Text Classification The code is adapted from the source codes of BERT-ATTACK [1], APLC_XLNet [2], and Atte

1 May 14, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Pulkit Kathuria 173 Jan 04, 2023
Simple program that translates the name of files into English

Simple program that translates the name of files into English. Useful for when editing/inspecting programs that were developed in a foreign language.

0 Dec 22, 2021
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Chenyang Huang 37 Jan 04, 2023
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022