The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo

Overview

Subformer

This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while reducing parameters in generative Transformers from 25% ~ 70%. The Subformer consists of the following two techniques:

  1. Sandwich-style parameter sharing, in which we share all the layers in a block except the first and last. This allows us the use the central shared layers --"sandwich module" -- as a large representation learner (similar to BERT vs ALBERT) while the input and output model layers are able to focus on more specific representations for token prediction/generation while maintaining performance.
  2. For our sequence to sequence tasks, we also introduce SAFE (self-attentive factorized embeddings), which help us reduce embedding parameters significantly, while still retaining performance.

If you used this code or found our work useful, please cite:

@inproceedings{reid2021subformer,
    title = {{S}ubformer: {E}xploring {W}eight {S}haring for {P}arameter {E}fficiency in {G}enerative {T}ransformers},
    author = {Machel Reid and Edison Marrese-Taylor and Yutaka Matsuo},
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
}

Requirements and Installation

(As this code is based on fairseq, some installation instructions are taken straight from their README)

  • PyTorch version >= 1.5.0
  • Python version >= 3.6
  • For training new models, you'll also need an NVIDIA GPU and NCCL
  • To install and develop locally:
git clone https://github.com/machelreid/subformer
cd subformer
pip install --e ./

# on MacOS:
# CFLAGS="-stdlib=libc++" pip install --editable ./
  • For faster training install NVIDIA's apex library:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./
  • For large datasets install PyArrow: pip install pyarrow
  • If you use Docker make sure to increase the shared memory size either with --ipc=host or --shm-size as command line options to nvidia-docker run .

Training

Machine Translation

python train.py $DATA_BIN --arch transformer_wmt_en_de \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --lr 5e-4 \
    --warmup-init-lr 1e-7 --stop-min-lr 1e-9 --lr-scheduler inverse_sqrt --warmup-updates 10000 \
    --optimizer adam --adam-betas '(0.9, 0.999)' --adam-eps 1e-6 --task translation \
    --max-tokens 8192 --weight-decay 0.01 --dropout 0.2 --encoder-layers 6 --encoder-embed-dim 512 \
    --decoder-layers 6 --decoder-embed-dim 512 --fp16 --max-source-positions 10000 \
    --max-target-positions 10000 --max-update 200000 --seed 1 \
    --save-dir $CHECKPOINT_DIR --share-all-embeddings \
    --share-encoder-parameters-sandwich --share-decoder-parameters-sandwich \ #for sandwich-style parameter sharing
    --reduction-dim 320 #for SAFE embeddings

Generation

python generate.py --path $CHECKPOINT --gen-subset $SPLIT --beam 5 --lenpen $LENPEN --batch-size 400 --remove-bpe

CNN-DM Summarization

fairseq-train $DATA_BIN \
   --share-decoder-input-output-embed \
   --max-update 30000 \
   --optimizer adam --adam-betas '(0.9, 0.98)' --skip-invalid-size-inputs-valid-test \
   --lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 --warmup-updates 10000 --lr 0.0005 \
   --stop-min-lr 1e-09 --clip-norm 0.1 --dropout 0.3 --weight-decay 0.0 \
   --criterion label_smoothed_cross_entropy --label-smoothing 0.1 --update-freq 7 --attention-dropout 0.2 \
   --max-tokens 8192 --arch transformer_wmt_en_de --seed 1 --warmup-init-lr 1e-7 \
   --source-lang source_bpe --target-lang target_bpe --save-dir $CHECKPOINT_DIR --no-epoch-checkpoints --keep-best-checkpoints 10 --truncate-source --max-source-positions 512 --share-encoder-parameters-sandwich --share-decoder-parameters-sandwich --sandwich-embed-dim 1024 --sandwich-ffn-embed-dim 3072 --reduction-dim 256

Generation

fairseq-generate $DATA_BIN --task translation --gen-subset $SPLIT --batch-size 32 --path $CHECKPOINT --remove-bpe  --min-len 55 --beam 5 --max-len-b 140 --no-repeat-ngram-size 3 --lenpen $LENPEN -s source_bpe -t target_bpe --truncate-source --max-source-positions 512

Note that the min,max len parameters can be tuned for better performance

For post processing and ROUGE calculation feel free to take a look at this.

Citation

Please cite as:

@inproceedings{reid2021subformer,
    title = {{S}ubformer: {E}xploring {W}eight {S}haring for {P}arameter {E}fficiency in {G}enerative {T}ransformers},
    author = {Machel Reid and Edison Marrese-Taylor and Yutaka Matsuo},
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
}
Owner
Machel Reid
Researcher at University of Tokyo. Research Intern at CMU. Masason Foundation Scholar. Won the Rakuten Hackathon 2018.
Machel Reid
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
ConvBERT-Prod

ConvBERT 目录 0. 仓库结构 1. 简介 2. 数据集和复现精度 3. 准备数据与环境 3.1 准备环境 3.2 准备数据 3.3 准备模型 4. 开始使用 4.1 模型训练 4.2 模型评估 4.3 模型预测 5. 模型推理部署 5.1 基于Inference的推理 5.2 基于Serv

yujun 7 Apr 08, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
A python package to fine-tune transformer-based models for named entity recognition (NER).

nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.

Felix Stollenwerk 13 Jul 30, 2022
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
Script to generate VAD dataset used in Asteroid recipe

About the dataset LibriVAD is an open source dataset for voice activity detection in noisy environments. It is derived from LibriSpeech signals (clean

11 Sep 15, 2022
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

775 Dec 24, 2022
State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

John Snow Labs 3k Jan 05, 2023
Graphical user interface for Argos Translate

Argos Translate GUI Website | GitHub | PyPI Graphical user interface for Argos Translate. Install pip3 install argostranslategui

Argos Open Tech 16 Dec 07, 2022
Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁

TGCLOUD 🪁 Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁 Features Easy to Deploy Heroku Supp

Mr.Acid dev 6 Oct 18, 2022
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
C.J. Hutto 3.8k Dec 30, 2022
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022