[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Overview

Compact Transformers

Preprint Link: Escaping the Big Data Paradigm with Compact Transformers

By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Abulikemu Abuduweili[1], Jiachen Li[1,2], and Humphrey Shi[1,2,3]

*Ali Hassani and Steven Walton contributed equal work

In association with SHI Lab @ University of Oregon[1] and UIUC[2], and Picsart AI Research (PAIR)[3]

model-sym

Abstract

With the rise of Transformers as the standard for language processing, and their advancements in computer vi-sion, along with their unprecedented size and amounts of training data, many have come to believe that they are not suitable for small sets of data. This trend leads to great concerns, including but not limited to: limited availability of data in certain scientific domains and the exclusion ofthose with limited resource from research in the field. In this paper, we dispel the myth that transformers are “data-hungry” and therefore can only be applied to large sets of data. We show for the first time that with the right size and tokenization, transformers can perform head-to-head with state-of-the-art CNNs on small datasets. Our model eliminates the requirement for class token and positional embed-dings through a novel sequence pooling strategy and the use of convolutions. We show that compared to CNNs, our compact transformers have fewer parameters and MACs,while obtaining similar accuracies. Our method is flexible in terms of model size, and can have as little as 0.28M parameters and achieve reasonable results. It can reach an ac-curacy of 94.72% when training from scratch on CIFAR-10,which is comparable with modern CNN based approaches,and a significant improvement over previous Transformer based models. Our simple and compact design democratizes transformers by making them accessible to those equipped with basic computing resources and/or dealing with important small datasets.

ViT-Lite: Lightweight ViT

Different from ViT we show that an image is not always worth 16x16 words and the image patch size matters. Transformers are not in fact ''data-hungry,'' as the authors proposed, and smaller patching can be used to train efficiently on smaller datasets.

CVT: Compact Vision Transformers

Compact Vision Transformers better utilize information with Sequence Pooling post encoder, eliminating the need for the class token while achieving better accuracy.

CCT: Compact Convolutional Transformers

Compact Convolutional Transformers not only use the sequence pooling but also replace the patch embedding with a convolutional embedding, allowing for better inductive bias and making positional embeddings optional. CCT achieves better accuracy than ViT-Lite and CVT and increases the flexibility of the input parameters.

Comparison

How to run

Please make sure you're using the latest stable PyTorch version:

torch==1.8.1
torchvision==0.8.1

Refer to PyTorch's Getting Started page for detailed instructions.

We recommend starting with our faster version (CCT-2/3x2) which can be run with the following command. If you are running on a CPU we recommend this model.

python main.py \
       --model cct_2 \
       --conv-size 3 \
       --conv-layers 2 \
       path/to/cifar10

If you would like to run our best running model (CCT-7/3x1) with CIFAR-10 on your machine, please use the following command.

python main.py \
       --model cct_7 \
       --conv-size 3 \
       --conv-layers 1 \
       path/to/cifar10

Results

Type can be read in the format L/PxC where L is the number of transformer layers, P is the patch/convolution size, and C (CCT only) is the number of convolutional layers.

Model Type CIFAR-10 CIFAR-100 # Params MACs
ViT-Lite 7/4 91.38% 69.75% 3.717M 0.239G
6/4 90.94% 69.20% 3.191M 0.205G
CVT 7/4 92.43% 73.01% 3.717M 0.236G
6/4 92.58% 72.25% 3.190M 0.202G
CCT 2/3x2 89.17% 66.90% 0.284M 0.033G
4/3x2 91.45% 70.46% 0.482M 0.046G
6/3x2 93.56% 74.47% 3.327M 0.241G
7/3x2 93.65% 74.77% 3.853M 0.275G
7/3x1 94.72% 76.67% 3.760M 0.947G

Model zoo will be available soon.

Citation

@article{hassani2021escaping,
	title        = {Escaping the Big Data Paradigm with Compact Transformers},
	author       = {Ali Hassani and Steven Walton and Nikhil Shah and Abulikemu Abuduweili and Jiachen Li and Humphrey Shi},
	year         = 2021,
	url          = {https://arxiv.org/abs/2104.05704},
	eprint       = {2104.05704},
	archiveprefix = {arXiv},
	primaryclass = {cs.CV}
}
Owner
SHI Lab
Research in Synergetic & Holistic Intelligence, with current focus on Computer Vision, Machine Learning, and AI Systems & Applications
SHI Lab
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Amazon Web Services - Labs 1.1k Dec 27, 2022
Just a basic Telegram AI chat bot written in Python using Pyrogram.

Nikko ChatBot Just a basic Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher. A bot token. Installation $ https

ʀᴇxɪɴᴀᴢᴏʀ 2 Oct 21, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
APEACH: Attacking Pejorative Expressions with Analysis on Crowd-generated Hate Speech Evaluation Datasets

APEACH - Korean Hate Speech Evaluation Datasets APEACH is the first crowd-generated Korean evaluation dataset for hate speech detection. Sentences of

Kevin-Yang 70 Dec 06, 2022
This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

37 Dec 04, 2022
Repository for Project Insight: NLP as a Service

Project Insight NLP as a Service Contents Introduction Features Installation Setup and Documentation Project Details Demonstration Directory Details H

Abhishek Kumar Mishra 286 Dec 06, 2022
Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers

beyond masking Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers The code is coming Figure 1: Pipeline of token-based pre-

Yunjie Tian 23 Sep 27, 2022
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

Alexa 62 Dec 20, 2022
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
Main repository for the chatbot Bobotinho.

Bobotinho Bot Main repository for the chatbot Bobotinho. ℹ️ Introduction Twitch chatbot with entertainment commands. ‎ 💻 Technologies Concurrent code

Bobotinho 14 Nov 29, 2022
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR

Speech_38_ru_commands Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR Программа умеет распознавать 38 ключевы

Andrey 9 May 05, 2022
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022
Image2pcl - Enter the metaverse with 2D image to 3D projections

Image2PCL Enter the metaverse with 2D image to 3D projections! This is an implem

Benjamin Ho 0 Feb 05, 2022