This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

Overview

About spellchecker.py

Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levenshtein string metric for measuring edit distance between two sequences of characters.

How to Write Your Own Test Cases

In the lib folder, you will see two different text files called 'candidate_words.txt' and 'incorrect_words.txt':

  • The candidate_words.txt text file can contain an unlimited amount of CORRECTLY spelled words, with each word written on a new line.
  • The incorrect_words.txt text file can contain an unlimited amount of INCORRECTLY spelled words, with each word written on a new line. However, each incorrectly spelled word in this list MUST have its correctly spelled counterpart contained somewhere in the 'candidate_words.txt' text file. It doesn't matter where, since the 'candidate_words.txt' file will be randomly shuffled anyway.

In the test folder, you will see a text file called target_words.txt:

  • The 'target_words.txt' file will contain the CORRECT spelling of each word contained in the 'incorrect_words.txt' text file, with each being on a new line in the same exact order that you inserted their incorrectly spelled counterparts in the 'incorrect_words.txt' text file. It is important that both the incorrectly and correctly spelled words are in the same order to be able to calculate the accuracy of the spell checker.

To view an example on how to create your own test cases, take a look at the files provided in either folder.

How to Run the Program

Enter the folder's directory using your terminal. Then, simply run python3 spellchecker.py

  • The only thing you will need to modify are the files in the lib and test folders if you want to try the program with your own test cases. The program does not need to be touched, unless you'd like to modify the global variable 'THRESHOLD', which is used as the threshold to find an incorrectly spelled word's closest approximation.
  • The incorrectly spelled words in 'incorrect_words.txt' will be run through the program to find its closest lexical match from the candidate_words.txt text file using the Damerau-Levenshtein algorithm.
  • The spellchecked words will then be, in order, cross checked against its intended counterparts in target_words.txt to calculate the overall accuracy of the spellchecking algorithm.

The results of the program will then be printed to your terminal.

Dependencies

Ensure that you have difflib installed for python3.

Final Words

Feel free to use or modify this program for your intended purposes!

Owner
Raihan Ahmed
Pursuing a degree in CS with concentrations in Computer Science, Computer Networks and Security, and Information Technology. Minoring in Linguistics.
Raihan Ahmed
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
BeautyNet is an AI powered model which can tell you whether you're beautiful or not.

BeautyNet BeautyNet is an AI powered model which can tell you whether you're beautiful or not. Download Dataset from here:https://www.kaggle.com/gpios

Ansh Gupta 0 May 06, 2022
this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

1 Nov 02, 2021
Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Zhenhailong Wang 2 Jul 15, 2022
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.

ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia

Facebook Research 9.7k Jan 09, 2023
🦆 Contextually-keyed word vectors

sense2vec: Contextually-keyed word vectors sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detaile

Explosion 1.5k Dec 25, 2022
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
Code associated with the Don't Stop Pretraining ACL 2020 paper

dont-stop-pretraining Code associated with the Don't Stop Pretraining ACL 2020 paper Citation @inproceedings{dontstoppretraining2020, author = {Suchi

AI2 449 Jan 04, 2023
Graphical user interface for Argos Translate

Argos Translate GUI Website | GitHub | PyPI Graphical user interface for Argos Translate. Install pip3 install argostranslategui

Argos Open Tech 16 Dec 07, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
VMD Audio/Text control with natural language

This repository is a proof of principle for performing Molecular Dynamics analysis, in this case with the program VMD, via natural language commands.

Andrew White 13 Jun 09, 2022
A Python script which randomly chooses and prints a file from a directory.

___ ____ ____ _ __ ___ / _ \ | _ \ | _ \ ___ _ __ | '__| / _ \ | |_| || | | || | | | / _ \| '__| | | | __/ | _ || |_| || |_| || __

yesmaybenookay 0 Aug 06, 2021
Korea Spell Checker

한국어 문서 koSpellPy Korean Spell checker How to use Install pip install kospellpy Use from kospellpy import spell_init spell_checker = spell_init() # d

kangsukmin 2 Oct 20, 2021
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
Google and Stanford University released a new pre-trained model called ELECTRA

Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For furth

Yiming Cui 1.2k Dec 30, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
Maha is a text processing library specially developed to deal with Arabic text.

An Arabic text processing library intended for use in NLP applications Maha is a text processing library specially developed to deal with Arabic text.

Mohammad Al-Fetyani 184 Nov 27, 2022
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022