This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

Overview

About spellchecker.py

Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levenshtein string metric for measuring edit distance between two sequences of characters.

How to Write Your Own Test Cases

In the lib folder, you will see two different text files called 'candidate_words.txt' and 'incorrect_words.txt':

  • The candidate_words.txt text file can contain an unlimited amount of CORRECTLY spelled words, with each word written on a new line.
  • The incorrect_words.txt text file can contain an unlimited amount of INCORRECTLY spelled words, with each word written on a new line. However, each incorrectly spelled word in this list MUST have its correctly spelled counterpart contained somewhere in the 'candidate_words.txt' text file. It doesn't matter where, since the 'candidate_words.txt' file will be randomly shuffled anyway.

In the test folder, you will see a text file called target_words.txt:

  • The 'target_words.txt' file will contain the CORRECT spelling of each word contained in the 'incorrect_words.txt' text file, with each being on a new line in the same exact order that you inserted their incorrectly spelled counterparts in the 'incorrect_words.txt' text file. It is important that both the incorrectly and correctly spelled words are in the same order to be able to calculate the accuracy of the spell checker.

To view an example on how to create your own test cases, take a look at the files provided in either folder.

How to Run the Program

Enter the folder's directory using your terminal. Then, simply run python3 spellchecker.py

  • The only thing you will need to modify are the files in the lib and test folders if you want to try the program with your own test cases. The program does not need to be touched, unless you'd like to modify the global variable 'THRESHOLD', which is used as the threshold to find an incorrectly spelled word's closest approximation.
  • The incorrectly spelled words in 'incorrect_words.txt' will be run through the program to find its closest lexical match from the candidate_words.txt text file using the Damerau-Levenshtein algorithm.
  • The spellchecked words will then be, in order, cross checked against its intended counterparts in target_words.txt to calculate the overall accuracy of the spellchecking algorithm.

The results of the program will then be printed to your terminal.

Dependencies

Ensure that you have difflib installed for python3.

Final Words

Feel free to use or modify this program for your intended purposes!

Owner
Raihan Ahmed
Pursuing a degree in CS with concentrations in Computer Science, Computer Networks and Security, and Information Technology. Minoring in Linguistics.
Raihan Ahmed
An open source framework for seq2seq models in PyTorch.

pytorch-seq2seq Documentation This is a framework for sequence-to-sequence (seq2seq) models implemented in PyTorch. The framework has modularized and

International Business Machines 1.4k Jan 02, 2023
A desktop GUI providing an audio interface for GPT3.

Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven

16 Nov 27, 2022
Toward a Visual Concept Vocabulary for GAN Latent Space, ICCV 2021

Toward a Visual Concept Vocabulary for GAN Latent Space Code and data from the ICCV 2021 paper Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Kl

Sarah Schwettmann 13 Dec 23, 2022
It analyze the sentiment of the user, whether it is postive or negative.

Sentiment-Analyzer-Tool It analyze the sentiment of the user, whether it is postive or negative. It uses streamlit library for creating this sentiment

Paras Patidar 18 Dec 17, 2022
ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Fortalice Solutions, LLC 78 Dec 12, 2022
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

Cambridge Language Technology Lab 61 Dec 10, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
A simple visual front end to the Maya UE4 RBF plugin delivered with MetaHumans

poseWrangler Overview PoseWrangler is a simple UI to create and edit pose-driven relationships in Maya using the MayaUE4RBF plugin. This plugin is dis

Christopher Evans 105 Dec 18, 2022
Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement

MTFAA-Net Unofficial PyTorch implementation of Baidu's MTFAA-Net: "Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speec

Shimin Zhang 87 Dec 19, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Machine learning classifiers to predict American Sign Language .

ASL-Classifiers American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United Stat

Tarek idrees 0 Feb 08, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022
The first online catalogue for Arabic NLP datasets.

Masader The first online catalogue for Arabic NLP datasets. This catalogue contains 200 datasets with more than 25 metadata annotations for each datas

ARBML 94 Dec 26, 2022
OpenAI CLIP text encoders for multiple languages!

Multilingual-CLIP OpenAI CLIP text encoders for any language Colab Notebook · Pre-trained Models · Report Bug Overview OpenAI recently released the pa

Fredrik Carlsson 481 Dec 30, 2022
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin

STonKGs 27 Aug 11, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022