A desktop GUI providing an audio interface for GPT3.

Overview

Jabberwocky

neil_degrasse_tyson_with_audio.mp4

Project Description

This GUI provides an audio interface to GPT-3. My main goal was to provide a convenient way to interact with various experts or public figures: imagine discussing physics with Einstein or hip hop with Kanye (or hip hop with Einstein? ๐Ÿค” ). I often find writing and speaking to be wildly different experiences and I imagined the same would be true when interacting with GPT-3. This turned out to be partially true - the default Mac text-to-speech functionality I'm using here is certainly not as lifelike as I'd like. Perhaps more powerful audio generation methods will pop up in a future release...

We also provide Task Mode containing built-in prompts for a number of sample tasks:

  • Summarization
  • Explain like I'm 5
  • Translation
  • How To (step by step instructions for performing everyday tasks)
  • Writing Style Analysis
  • Explain machine learning concepts in simple language
  • Generate ML paper abstracts
  • MMA Fight Analysis and Prediction

Getting Started

  1. Clone the repo.
git clone https://github.com/hdmamin/jabberwocky.git
  1. Install the necessary packages. I recommend using a virtual environment of some kind (virtualenv, conda, etc). If you're not using Mac OS, you could try installing portaudio with whatever package manager you're using, but app behavior on other systems is unknown.
brew install portaudio
pip install -r requirements.txt
python -m nltk.downloader punkt

If you have make installed you can simply use the command:

make install
  1. Add your openai API key somewhere the program can access it. There are two ways to do this:
echo your_openai_api_key > ~/.openai

or

export OPENAI_API_KEY=your_openai_api_key

(Make sure to use your actual key, not the literal text your_openai_api_key.)

  1. Run the app.
python gui/main.py

Or with make:

make run

Usage

Conversation Mode

In conversation mode, you can chat with a number of pre-defined personas or add new ones. New personas can be autogenerated or defined manually.

See data/conversation_personas for examples of autogenerated prompts. You can likely achieve better results using custom prompts though.

Conversation mode only supports spoken input, though you can edit flawed transcriptions manually. Querying GPT-3 with nonsensical or ungrammatical text will negatively affect response quality.

Task Mode

In task mode, you can ask GPT-3 to perform a number pre-defined tasks. Written and spoken input are both supported. By default, GPT-3's response is both typed out and read aloud.

Transcripts of responses from a small subset of non-conversation tasks can be found in the data/completions directory. You can also save your own completions while using the app.

Usage Notes

The first time you speak, the speech transcription back end will take a few seconds to calibrate to the level of ambient noise in your environment. You will know it's ready for transcription when you see a "Listening..." message appear below the Record button. Calibration only occurs once to save time.

Hotkeys

CTRL + SHIFT: Start recording audio (same as pressing the "Record" button).
CTRL + a: Get GPT-3's response to whatever input you've recorded (same as pressing the "Get Response" button).

Project Members

  • Harrison Mamin

Repo Structure

jabberwocky/
โ”œโ”€โ”€ data         # Raw and processed data. Some files are excluded from github but the ones needed to run the app are there.
โ”œโ”€โ”€ notes        # Miscellaneous notes from the development process stored as raw text files.
โ”œโ”€โ”€ notebooks    # Jupyter notebooks for experimentation and exploratory analysis.
โ”œโ”€โ”€ reports      # Markdown reports (performance reports, blog posts, etc.)
โ”œโ”€โ”€ gui          # GUI scripts. The main script should be run from the project root directory. 
โ””โ”€โ”€ lib          # Python package. Code can be imported in analysis notebooks, py scripts, etc.

The docker and setup dirs contain remnants from previous attempts to package the app. While I ultimately decided to go with a simpler approach, I left them in the repo so I have the option of picking up where I left off if I decide to work on a new version.

Owner
Data Scientist
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transform

Bytedance Inc. 2.5k Jan 03, 2023
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

Jianjie(JJ) Luo 13 Jan 06, 2023
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
Paddle2.x version AI-Writer

Paddle2.x ็‰ˆๆœฌAI-Writer ็”จ้ญ”ๆ”น GPT ็”Ÿๆˆ็ฝ‘ๆ–‡ใ€‚Tuned GPT for novel generation.

yujun 74 Jan 04, 2023
BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which

Clova AI Research 94 Dec 30, 2022
Code for Discovering Topics in Long-tailed Corpora with Causal Intervention.

Code for Discovering Topics in Long-tailed Corpora with Causal Intervention ACL2021 Findings Usage 0. Prepare environment Requirements: python==3.6 te

Xiaobao Wu 8 Dec 16, 2022
Dรฉ op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Dรฉ op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Lau 1 Dec 17, 2021
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper

Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont

44 Dec 31, 2022
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
Sentence boundary disambiguation tool for Japanese texts (ๆ—ฅๆœฌ่ชžๆ–‡ๅขƒ็•Œๅˆคๅฎšๅ™จ)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e 'ๅฎฟใ‚’ไบˆ็ด„ใ—ใพใ—ใŸโ™ช!ใพใ 2ใƒถๆœˆใ‚‚ๅ…ˆใ ใ‘ใฉใ€‚ๆ—ฉใ™ใŽ

Megagon Labs 160 Dec 23, 2022
๐ŸŒ Translation microservice powered by AI

Dot Translate ๐ŸŒ A microservice for quick and local translation using A.I. This service starts a local webserver used for neural machine translation.

Dot HQ 48 Nov 22, 2022
A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

LineFlow: Framework-Agnostic NLP Data Loader in Python LineFlow is a simple text dataset loader for NLP deep learning tasks. LineFlow was designed to

TofuNLP 177 Jan 04, 2023
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022