A desktop GUI providing an audio interface for GPT3.

Overview

Jabberwocky

neil_degrasse_tyson_with_audio.mp4

Project Description

This GUI provides an audio interface to GPT-3. My main goal was to provide a convenient way to interact with various experts or public figures: imagine discussing physics with Einstein or hip hop with Kanye (or hip hop with Einstein? πŸ€” ). I often find writing and speaking to be wildly different experiences and I imagined the same would be true when interacting with GPT-3. This turned out to be partially true - the default Mac text-to-speech functionality I'm using here is certainly not as lifelike as I'd like. Perhaps more powerful audio generation methods will pop up in a future release...

We also provide Task Mode containing built-in prompts for a number of sample tasks:

  • Summarization
  • Explain like I'm 5
  • Translation
  • How To (step by step instructions for performing everyday tasks)
  • Writing Style Analysis
  • Explain machine learning concepts in simple language
  • Generate ML paper abstracts
  • MMA Fight Analysis and Prediction

Getting Started

  1. Clone the repo.
git clone https://github.com/hdmamin/jabberwocky.git
  1. Install the necessary packages. I recommend using a virtual environment of some kind (virtualenv, conda, etc). If you're not using Mac OS, you could try installing portaudio with whatever package manager you're using, but app behavior on other systems is unknown.
brew install portaudio
pip install -r requirements.txt
python -m nltk.downloader punkt

If you have make installed you can simply use the command:

make install
  1. Add your openai API key somewhere the program can access it. There are two ways to do this:
echo your_openai_api_key > ~/.openai

or

export OPENAI_API_KEY=your_openai_api_key

(Make sure to use your actual key, not the literal text your_openai_api_key.)

  1. Run the app.
python gui/main.py

Or with make:

make run

Usage

Conversation Mode

In conversation mode, you can chat with a number of pre-defined personas or add new ones. New personas can be autogenerated or defined manually.

See data/conversation_personas for examples of autogenerated prompts. You can likely achieve better results using custom prompts though.

Conversation mode only supports spoken input, though you can edit flawed transcriptions manually. Querying GPT-3 with nonsensical or ungrammatical text will negatively affect response quality.

Task Mode

In task mode, you can ask GPT-3 to perform a number pre-defined tasks. Written and spoken input are both supported. By default, GPT-3's response is both typed out and read aloud.

Transcripts of responses from a small subset of non-conversation tasks can be found in the data/completions directory. You can also save your own completions while using the app.

Usage Notes

The first time you speak, the speech transcription back end will take a few seconds to calibrate to the level of ambient noise in your environment. You will know it's ready for transcription when you see a "Listening..." message appear below the Record button. Calibration only occurs once to save time.

Hotkeys

CTRL + SHIFT: Start recording audio (same as pressing the "Record" button).
CTRL + a: Get GPT-3's response to whatever input you've recorded (same as pressing the "Get Response" button).

Project Members

  • Harrison Mamin

Repo Structure

jabberwocky/
β”œβ”€β”€ data         # Raw and processed data. Some files are excluded from github but the ones needed to run the app are there.
β”œβ”€β”€ notes        # Miscellaneous notes from the development process stored as raw text files.
β”œβ”€β”€ notebooks    # Jupyter notebooks for experimentation and exploratory analysis.
β”œβ”€β”€ reports      # Markdown reports (performance reports, blog posts, etc.)
β”œβ”€β”€ gui          # GUI scripts. The main script should be run from the project root directory. 
└── lib          # Python package. Code can be imported in analysis notebooks, py scripts, etc.

The docker and setup dirs contain remnants from previous attempts to package the app. While I ultimately decided to go with a simpler approach, I left them in the repo so I have the option of picking up where I left off if I decide to work on a new version.

Owner
Data Scientist
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
Kerberoast with ACL abuse capabilities

targetedKerberoast targetedKerberoast is a Python script that can, like many others (e.g. GetUserSPNs.py), print "kerberoast" hashes for user accounts

Shutdown 213 Dec 22, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Search-Engine - πŸ“– AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
RepositΓ³rio da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este Γ© o Git da disciplina Compiladores 1. Aqui ficarΓ‘ o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker

Multimedia Research 485 Jan 04, 2023
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data

Traditional Chinese Text Recognition Dataset: Synthetic Dataset and Labeled Data Authors: Yi-Chang Chen, Yu-Chuan Chang, Yen-Cheng Chang and Yi-Ren Ye

Yi-Chang Chen 5 Dec 15, 2022
πŸ€– Basic Financial Chatbot with handoff ability built with Rasa

Financial Services Example Bot This is an example chatbot demonstrating how to build AI assistants for financial services and banking with Rasa. It in

Mohammad Javad Hossieni 4 Aug 10, 2022
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
Lyrics generation with GPT2-based Transformer

HuggingArtists - Train a model to generate lyrics Create AI-Artist in just 5 minutes! πŸš€ Run the demo notebook to train πŸš€ Run the GUI demo to test Di

Aleksey Korshuk 65 Dec 19, 2022
A simple tool to update bib entries with their official information (e.g., DBLP or the ACL anthology).

Rebiber: A tool for normalizing bibtex with official info. We often cite papers using their arXiv versions without noting that they are already PUBLIS

(Bill) Yuchen Lin 2k Jan 01, 2023
Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

2 Jan 20, 2022
Yuqing Xie 2 Feb 17, 2022
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022
A repo for materials relating to the tutorial of CS-332 NLP

CS-332-NLP A repo for materials relating to the tutorial of CS-332 NLP Contents Tutorial 1: Introduction Corpus Regular expression Tokenization Tutori

Alok singh 9 Feb 15, 2022
BookNLP, a natural language processing pipeline for books

BookNLP BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including: Part-of-speech taggin

654 Jan 02, 2023