自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

Overview

ja-timex

自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

概要

ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

以下の機能を持っています。

  • ルールベースによる日本語テキストからの日付や時刻、期間や頻度といった時間情報表現を抽出
  • アラビア数字/漢数字、西暦/和暦などの多彩なフォーマットに対応
  • 時間表現のdatetime/timedelta形式への変換サポート

入力

from ja_timex import TimexParser

timexes = TimexParser().parse("彼は2008年4月から週に3回ジョギングを1時間行ってきた")

出力

[<TIMEX3 tid="t0" type="DATE" value="2008-04-XX" text="2008年4月">,
 <TIMEX3 tid="t1" type="SET" value="P1W" freq="3X" text="週に3回">,
 <TIMEX3 tid="t2" type="DURATION" value="PT1H" text="1時間">]

datetime/timedeltaへの変換

# <TIMEX3 tid="t0" type="DATE" value="2008-04-XX" text="2008年4月">
In []: timexes[0].to_datetime()
Out[]: DateTime(2008, 4, 1, 0, 0, 0, tzinfo=Timezone('Asia/Tokyo'))
# <TIMEX3 tid="t2" type="DURATION" value="PT1H" text="1時間">
In []: timexes[2].to_duration()
Out[]: Duration(hours=1)

インストール

pip install ja-timex

ドキュメント

ja-timex documentation

参考仕様

本パッケージは、以下の論文で提案されている時間情報アノテーションの枠組みを元に作成しています。

Comments
  • [Feature Request] 漢数字からアラビア数字への変換を無効にするオプションの追加

    [Feature Request] 漢数字からアラビア数字への変換を無効にするオプションの追加

    🚀 機能提案

    漢数字からアラビア数字への変換を無効にするオプションの追加

    モチベーション

    • 漢数字からアラビア数字に変換する際に「一時はどうなることかと」「十分なインターバル」といった表現を誤検出してしまう問題がある
    • 日付が漢数字で書かれないドキュメントであることが分かっている場合には、こうした変換を無効にすることで抽出精度を上げることができる

    解決策や課題解決の方針

    以下のように引数を渡す。

    timex_parser = TimexParser(ignroe_kansuji=True)
    

    追加/補足情報

    enhancement 
    opened by yagays 3
  • [Modify Rules] 夜9時・今夜9時のような表現のサポート

    [Modify Rules] 夜9時・今夜9時のような表現のサポート

    📝 時間情報表現のルール

    今夜9時今日の夜9時からのような表現を21時として解釈する

    用例

    告知などでよく使われる表現。 https://twitter.com/telebee_tnc/status/1420572285157613574

    時間表現への変換

    >>> timexes = TimexParser().parse("今夜9時スタートです。")
    >>> timexes
    [<TIMEX3 tid="t0" type="TIME" value="T21-XX-XX" text="夜9時">]
    

    早速使わせていただいています。是非ご検討のほどお願いします。

    opened by harokki 3
  • [Bug] 日付表現で半を含む際のto_datetime()の動作

    [Bug] 日付表現で半を含む際のto_datetime()の動作

    🐛 Bug

    説明

    日付表現に半や午後(PM)を含むとき、to_datetime()を実行すると、TIMEX3タグのvalueには反映されているようですが、日付型/時間型に半や午後の時刻が反映されません。 仕様でしょうか?? 初issueなので何か間違えていたら申し訳ありません。よろしくお願いします。

    現状挙動

    timex_parser = TimexParser(reference=pendulum.now()) # 2022/8/27 18:00:00 
    print(timex_parser.parse("20時半"))
    print(timex_parser.parse("20時半")[0].to_datetime())
    print()
    print(timex_parser.parse("午後11時"))
    print(timex_parser.parse("午後11時")[0].to_datetime())
    

    出力

    [<TIMEX3 tid="t0" type="TIME" value="T20-30-XX" text="20時半">]
    2022-08-27T20:00:00+09:00
    
    [<TIMEX3 tid="t0" type="TIME" value="T23-XX-XX" text="午後11時">]
    2022-08-27T11:00:00+09:00
    

    理想の挙動

    出力

    [<TIMEX3 tid="t0" type="TIME" value="T20-30-XX" text="20時半">]
    2022-08-27T20:30:00+09:00
    
    [<TIMEX3 tid="t0" type="TIME" value="T23-XX-XX" text="午後11時">]
    2022-08-27T23:00:00+09:00
    

    実行環境

    • ja-timexのバージョン : 0.2.6
    • Pythonのバージョン : 3.10.5
    • OSの情報: Windows10
    bug 
    opened by qwertyroiro 2
  • [Bug] 漢数字の時刻表現のspanがずれる

    [Bug] 漢数字の時刻表現のspanがずれる

    🐛 Bug

    説明

    入力した文章から抽出したtimexがもっているspanの長さが想定していた長さとちがう。

    現状挙動

    text = "平成三十一年に起きた出来事はなんですか?"
    timex = TimexParser().parse(text)
    print(timex[0].span)
    # (0,5)
    

    理想の挙動

    text = "平成三十一年に起きた出来事はなんですか?"
    timex = TimexParser().parse(text)
    print(timex[0].span)
    # (0,6)
    

    再現方法やエラー内容

    実行環境

    • ja-timexのバージョン : 0.2.0
    • Pythonのバージョン : 3.8.10
    • OSの情報: MacOS Bigsur

    追加/補足情報

    もしかしてbugではなく、一度漢数字をアラビア数字にしたあと、spanをとっているのでしょうか?そういう仕様なのでしょうか? もしそうでしたら、変更前の文字列のspan情報が欲しいというfeatureを投げたいです。

    bug 
    opened by reonyanarticle 2
  • [Feature Request] 期間を含む表現が数字を含まない場合にも range_start (range_end) が取得できる

    [Feature Request] 期間を含む表現が数字を含まない場合にも range_start (range_end) が取得できる

    🚀 機能提案

    現在 TimexParser.parse は期間を表す表現(例えば「15日から16日」)のときには、range_startrange_end) がTrueとなります。一方数字を含まない表現「昨日から今日」の場合には range_start は機能していません。

    スクリーンショット 2022-01-31 10 44 51

    そこで数字を含まない期間表現が入力に含まれている場合にも range_start (end) が True となる挙動になってほしいと考えています 🙏

    モチベーション

    • 本パッケージのユーザが期間表現が数字を含まない場合に特殊なフローを追加しなくても良くなる。

    解決策や課題解決の方針

    追加/補足情報

    enhancement 
    opened by takahi-i 1
  • [Modify Rules] 複数の日付間の範囲指定のrangeStartとrangeEndが対応しない

    [Modify Rules] 複数の日付間の範囲指定のrangeStartとrangeEndが対応しない

    📝 時間情報表現のルール

    「2012年5月30日(水)〜6月10日(日)」といった表現の際に、中間の2つに対してrangeStartとrangeEndが付与され、外側の2つには付与されない。

    [<TIMEX3 tid="t0" type="DATE" value="2012-05-30" text="2012年5月30日">,
     <TIMEX3 tid="t1" type="DATE" value="XXXX-WXX-3" range_start="True" text="(水)">,
     <TIMEX3 tid="t2" type="DATE" value="XXXX-06-10" range_end="True" text="6月10日">,
     <TIMEX3 tid="t3" type="DATE" value="XXXX-WXX-7" text="(日)">]
    

    用例

    「2012年5月30日(水)〜6月10日(日)」

    時間表現への変換

    仕様を検討

    追加/補足情報

    rule 
    opened by yagays 1
Releases(v0.2.7)
  • v0.2.7(Sep 14, 2022)

  • v0.2.6(Jun 11, 2022)

  • v0.2.5(Apr 17, 2022)

    Changes

    🐛 Bug Fixes

    • 文字列正規化により文字列長が長くなる場合にspanが補正されない問題を修正 (#82) @yagays

    📖 Documentation and examples

    • ドキュメントを更新 (#81) @yagays
    • update docs (#78) @yagays
    • ドキュメントを更新 (#77) @yagays

    🚧 Maintenance

    • release-drafterが対象とするデフォルトブランチ名を変更 (#80) @yagays
    • ブランチ名がfeatureかfixの場合のみCIでtoxを実行 (#79) @yagays
    Source code(tar.gz)
    Source code(zip)
  • v0.2.4(Feb 23, 2022)

  • v0.2.3(Feb 4, 2022)

    Changes

    🚀 Features

    • 今世紀という表現をサポート (#74) @yagays
    • 範囲表現でも期間を表す場合に対応 (#73) @yagays
    Source code(tar.gz)
    Source code(zip)
  • v0.2.2(Jan 29, 2022)

    Changes

    🐛 Bug Fixes

    • 漢数字やコンマなどの正規化前の時刻表現の文字列とスパンをTIMEXタグに含める (#70) @yagays

    📖 Documentation and examples

    • ドキュメントに時刻表現の数値の正規化の追加 (#71) @yagays

    🚧 Maintenance

    • dev-dependenciesのバージョンを一括で上げる (#69) @yagays
    • 現在の年を補完するテストを修正 (#68) @yagays
    Source code(tar.gz)
    Source code(zip)
  • v0.2.1(Oct 17, 2021)

    Changes

    🚀 Features

    • Xから翌Yという表現を範囲表現として取得する (#65) @yagays
    • 12:00〜17:30といった時間表現の抽出ミスを修正 (#64) @yagays

    🐛 Bug Fixes

    • 年表記で数字が小さいときもDATEとして抽出される問題を修正 (#66) @yagays

    📖 Documentation and examples

    • ドキュメントを修正 (#59) @yagays
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Sep 5, 2021)

    Changes

    TIMEXクラスに、範囲表現と起点と終点を表すrange_startrange_endというクラス変数を追加しました。

    🚀 Features

    • TIMEXタグの__repr__にrangeStart, rangeEndを追加 (#57) @yagays
    • "1,2ヶ月"や"1~2分"といった複数の日付表現が列挙された場合に対応 (#56) @yagays
    • TIMEXタグのrangeStartとrangeEndを追加し、抽出ルールを実装 (#55) @yagays

    📖 Documentation and examples

    • rangeStartとrangeEndに対応 (#58) @yagays
    Source code(tar.gz)
    Source code(zip)
  • v0.1.9(Aug 29, 2021)

    Changes

    🚀 Features

    • 数字正規化済みのテキストを利用できるように変更 (#52) @yagays

    🐛 Bug Fixes

    • 複数の漢数字を処理できない問題を修正 (#53) @yagays

    📖 Documentation and examples

    • ユーザが独自にルールを指定できるCustomTaggerのテストとドキュメントを追加 (#54) @yagays

    🚧 Maintenance

    • ユーザが独自にルールを指定できるCustomTaggerのテストとドキュメントを追加 (#54) @yagays
    Source code(tar.gz)
    Source code(zip)
  • v0.1.8(Aug 22, 2021)

    Changes

    🚀 Features

    • Filterの導入により対象外の表現を除外 (#49) @yagays

    🐛 Bug Fixes

    • 0.5ヶ月や3.5年前といった表現の取得ミスを修正 (#50) @yagays
    • 数字の途中を日付と誤認識する問題を修正 (#48) @yagays

    📖 Documentation and examples

    • 抽出例の具体例および既存研究との差異を追加 (#47) @yagays

    🚧 Maintenance

    • stop poetry install before running tox (#51) @yagays
    • Fix typos (#46) @shirayu
    Source code(tar.gz)
    Source code(zip)
  • v0.1.7(Aug 14, 2021)

    Changes

    🚀 Features

    • 漢数字を変換しないignore_kansujiパラメータを追加 (#44) @yagays
    • 末日という表現をサポート (#42) @yagays
    • 16世紀頃, 紀元前2世紀近くといった表現をサポート (#40) @yagays
    • 早朝6時や10時半といった表現をサポート (#36) @yagays
    • 深夜0時や深夜25時といった表現をサポート (#35) @yagays
    • 3日ぶりや10年ぶりといった表現をサポート (#32) @yagays
    • 8日目や30年もの間といった表現をサポート (#30) @yagays

    🐛 Bug Fixes

    • 一時代を時間として取得してしまう問題を修正 (#45) @yagays
    • 翌週28日が週28日と取得される問題を修正 (#39) @yagays
    • remove JUST mod (#38) @yagays
    • 数字が複数含まれるときに桁数のコンマ処理がされない問題を修正 (#37) @yagays
    • 12:30といった全角コロンの時間表記を取得できるように修正 (#34) @yagays
    • 時刻表現の後にスペースがある際にTimex.textに含まれないように修正 (#33) @yagays
    • 東京・千代田区や千春,千夏,千秋,千冬といった表現を取得してしまうバグを修正 (#31) @yagays
    • 全角括弧の囲みを取得するように修正 (#29) @yagays

    📖 Documentation and examples

    • update docs (#41) @yagays
    Source code(tar.gz)
    Source code(zip)
  • v0.1.6(Aug 9, 2021)

    Changes

    🚀 Features

    • to_datetime()でデフォルトのtimezoneを設定可能にする (#27) @yagays
    • 1年半後や1時間半前、半年といった表現をサポート (#23) @yagays
    • "半"という表現をサポート (#22) @yagays

    🐛 Bug Fixes

    • 先月や半年前などの数字を伴わない表現でto_duration()の計算を修正 (#25) @yagays
    • "世紀"の前に数字が無いとエラーが出る問題を修正 (#24) @yagays

    📖 Documentation and examples

    • 日付型/時間型への変換方法の説明を追加 (#28) @yagays
    • typoを修正 (#18) @yagays

    🚧 Maintenance

    • テストを追加 (#26) @yagays
    • enable to trigger with release drafter (#17) @yagays
    Source code(tar.gz)
    Source code(zip)
  • v0.1.5(Aug 6, 2021)

    Changes

    🚀 Features

    • 基準日を設定できるようにする (#14) @yagays
    • 夜9時・今夜9時のような表現をサポート (#13) @yagays (thanks @harokki)

    📖 Documentation and examples

    • 基準日時の説明を追加 (#16) @yagays

    🚧 Maintenance

    • streamlitのアプリでto_datetime/to_durationに対応 (#15) @yagays
    • add release-drafter (#12) @yagays
    Source code(tar.gz)
    Source code(zip)
  • 0.1.4(Aug 5, 2021)

    🐛 Bug fixes

    • "毎年6月"が"年6月"と判定されるバグを修正 #4
    • Windows環境でテストが通らないエラーを修正 #8

    🚧 Maintenance

    • CIを整備 #6 #10
    Source code(tar.gz)
    Source code(zip)
  • 0.1.3(Aug 1, 2021)

  • 0.1.0(Aug 1, 2021)

Owner
Yuki Okuda
Yuki Okuda
मराठी भाषा वाचविण्याचा एक प्रयास. इंग्रजी ते मराठीचा शब्दकोश. An attempt to preserve the Marathi language. A lightweight and ad free English to Marathi thesaurus.

For English, scroll down मराठी शब्द मराठी भाषा वाचवण्यासाठी मी हा ओपन सोर्स प्रोजेक्ट सुरू केला आहे. माझ्या मते, आपली भाषा हळूहळू आणि कोणाचाही लक्षात

मुक्त स्त्रोत 20 Oct 11, 2022
CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

3.4k Dec 27, 2022
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
(ACL 2022) The source code for the paper "Towards Abstractive Grounded Summarization of Podcast Transcripts"

Towards Abstractive Grounded Summarization of Podcast Transcripts We provide the source code for the paper "Towards Abstractive Grounded Summarization

10 Jul 01, 2022
A look-ahead multi-entity Transformer for modeling coordinated agents.

baller2vec++ This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec++: A Look-Ahead Multi-Entity Transformer For Modeling

Michael A. Alcorn 30 Dec 16, 2022
基于pytorch_rnn的古诗词生成

pytorch_peot_rnn 基于pytorch_rnn的古诗词生成 说明 config.py里面含有训练、测试、预测的参数,更改后运行: python main.py 预测结果 if config.do_predict: result = trainer.generate('丽日照残春')

西西嘛呦 3 May 26, 2022
Translates basic English sentences into the Huna language (hoo-NAH)

huna-translator The Huna Language Translates basic English sentences into the Huna language (hoo-NAH). The Huna constructed language was developed in

Miles Smith 0 Jan 20, 2022
Findings of ACL 2021

Assessing Dialogue Systems with Distribution Distances [arXiv][code] We propose to measure the performance of a dialogue system by computing the distr

Yahui Liu 16 Feb 24, 2022
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
Basic yet complete Machine Learning pipeline for NLP tasks

Basic yet complete Machine Learning pipeline for NLP tasks This repository accompanies the article on building basic yet complete ML pipelines for sol

Ivan 20 Aug 22, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speech Enhancement

MTFAA-Net Unofficial PyTorch implementation of Baidu's MTFAA-Net: "Multi-Scale Temporal Frequency Convolutional Network With Axial Attention for Speec

Shimin Zhang 87 Dec 19, 2022