PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Overview

Feature_CRF_AE

Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging:

@inproceedings{zhou-etal-2022-Bridging,
  title     = {Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging},
  author    = {Zhou, houquan and Li, yang and Li, Zhenghua and Zhang Min},
  booktitle = {Findings of ACL},
  year      = {2022},
  url       = {?},
  pages     = {?--?}
}

Please concact Jacob_Zhou \at outlook.com if you have any questions.

Contents

Installation

Feature_CRF_AE can be installing from source:

$ git clone https://github.com/Jacob-Zhou/FeatureCRFAE && cd FeatureCRFAE
$ bash scripts/setup.sh

The following requirements will be installed in scripts/setup.sh:

  • python: 3.7
  • allennlp: 1.2.2
  • pytorch: 1.6.0
  • transformers: 3.5.1
  • h5py: 3.1.0
  • matplotlib: 3.3.1
  • nltk: 3.5
  • numpy: 1.19.1
  • overrides: 3.1.0
  • scikit_learn: 1.0.2
  • seaborn: 0.11.0
  • tqdm: 4.49.0

For WSJ data, we use the ELMo representations of elmo_2x4096_512_2048cnn_2xhighway_5.5B from AllenNLP. For UD data, we use the ELMo representations released by HIT-SCIR.

The corresponding data and ELMo models can be download as follows:

# 1) UD data and ELMo models:
$ bash scripts/prepare_data.sh
# 2) UD data, ELMo models as well as WSJ data 
#    [please replace ~/treebank3/parsed/mrg/wsj/ with your path to LDC99T42]
$ bash scripts/prepare_data.sh ~/treebank3/parsed/mrg/wsj/

Performance

WSJ-All

Seed M-1 1-1 VM
0 84.29 70.03 78.43
1 82.34 64.42 77.27
2 84.68 62.78 77.83
3 82.55 65.00 77.35
4 82.20 66.69 77.33
Avg. 83.21 65.78 77.64
Std. 1.18 2.75 0.49

WSJ-Test

Seed M-1 1-1 VM
0 81.99 64.84 76.86
1 82.52 61.46 76.13
2 82.33 61.15 75.13
3 78.11 58.80 72.94
4 82.05 61.68 76.21
Avg. 81.40 61.59 75.45
Std. 1.85 2.15 1.54

Usage

We give some examples on scripts/examples.sh. Before run the code you should activate the virtual environment by:

$ . scripts/set_environment.sh

Training

To train a model from scratch, it is preferred to use the command-line option, which is more flexible and customizable. Here are some training examples:

$ python -u -m tagger.cmds.crf_ae train \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --train data/wsj/total.conll \
    --evaluate data/wsj/total.conll \
    --path save/crf_ae_wsj
$ python -u -m tagger.cmds.crf_ae train \
    --conf configs/crf_ae.ini \
    --ud-mode \
    --ud-feature \
    --ignore-capitalized \
    --language-specific-strip \
    --feat-min-freq 14 \
    --language de \
    --encoder elmo \
    --plm elmo_models/de \
    --train data/ud/de/total.conll \
    --evaluate data/ud/de/total.conll \
    --path save/crf_ae_de

For more instructions on training, please type python -m tagger.cmds.[crf_ae|feature_hmm] train -h.

Alternatively, We provides some equivalent command entry points registered in setup.py: crf-ae and feature-hmm.

$ crf-ae train \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --train data/wsj/total.conll \
    --evaluate data/wsj/total.conll \
    --path save/crf_ae

Evaluation

$ python -u -m tagger.cmds.crf_ae evaluate \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --data data/wsj/total.conll \
    --path save/crf_ae

Predict

$ python -u -m tagger.cmds.crf_ae predict \
    --conf configs/crf_ae.ini \
    --encoder elmo \
    --plm elmo_models/allennlp/elmo_2x4096_512_2048cnn_2xhighway_5.5B \
    --data data/wsj/total.conll \
    --path save/crf_ae \
    --pred save/crf_ae/pred.conll
Owner
Jacob Zhou
Jacob Zhou
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023
An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Fan 137 Oct 26, 2022
Treemap visualisation of Maya scene files

Ever wondered which nodes are responsible for that 600 mb+ Maya scene file? Features Fast, resizable UI Parsing at 50 mb/sec Dependency-free, single-f

Marcus Ottosson 76 Nov 12, 2022
Watson Natural Language Understanding and Knowledge Studio

Material de demonstração dos serviços: Watson Natural Language Understanding e Knowledge Studio Visão Geral: https://www.ibm.com/br-pt/cloud/watson-na

Vanderlei Munhoz 4 Oct 24, 2021
Fast, DB Backed pretrained word embeddings for natural language processing.

Embeddings Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning. Instead of lo

Victor Zhong 212 Nov 21, 2022
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023
DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task。涵盖68个领域、共计916万词的专业词典知识库,可用于文本分类、知识增强、领域词汇库扩充等自然语言处理应用。

liuhuanyong 357 Dec 24, 2022
Resources for "Natural Language Processing" Coursera course.

Natural Language Processing course resources This github contains practical assignments for Natural Language Processing course by Higher School of Eco

Advanced Machine Learning specialisation by HSE 1.1k Jan 01, 2023
Generate a cool README/About me page for your Github Profile

Github Profile README/ About Me Generator 💯 This webapp lets you build a cool README for your profile. A few inputs + ~15 mins = Your Github Profile

Rahul Banerjee 179 Jan 07, 2023
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
1 Jun 28, 2022
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
Generating new names based on trends in data using GPT2 (Transformer network)

MLOpsNameGenerator Overall Goal The goal of the project is to develop a model that is capable of creating Pokémon names based on its description, usin

Gustav Lang Moesmand 2 Jan 10, 2022