QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Overview

Moment-DETR

QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Jie Lei, Tamara L. Berg, Mohit Bansal

For dataset details, please check data/README.md

Getting Started

Prerequisites

  1. Clone this repo
git clone https://github.com/jayleicn/moment_detr.git
cd moment_detr
  1. Prepare feature files

Download moment_detr_features.tar.gz (8GB), extract it under project root directory:

tar -xf path/to/moment_detr_features.tar.gz
  1. Install dependencies.

This code requires Python 3.7, PyTorch, and a few other Python libraries. We recommend creating conda environment and installing all the dependencies as follows:

# create conda env
conda create --name moment_detr python=3.7
# activate env
conda actiavte moment_detr
# install pytorch with CUDA 11.0
conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch
# install other python packages
pip install tqdm ipython easydict tensorboard tabulate scikit-learn pandas

Training

Training can be launched by running the following command:

bash moment_detr/scripts/train.sh 

This will train Moment-DETR for 200 epochs on the QVHighlights train split, with SlowFast and Open AI CLIP features. The training is very fast, it can be done within 4 hours using a single RTX 2080Ti GPU. The checkpoints and other experiment log files will be written into results. For training under different settings, you can append additional command line flags to the command above. For example, if you want to train the model without the saliency loss (by setting the corresponding loss weight to 0):

bash moment_detr/scripts/train.sh --lw_saliency 0

For more configurable options, please checkout our config file moment_detr/config.py.

Inference

Once the model is trained, you can use the following command for inference:

bash moment_detr/scripts/inference.sh CHECKPOINT_PATH SPLIT_NAME  

where CHECKPOINT_PATH is the path to the saved checkpoint, SPLIT_NAME is the split name for inference, can be one of val and test.

Pretraining and Finetuning

Moment-DETR utilizes ASR captions for weakly supervised pretraining. To launch pretraining, run:

bash moment_detr/scripts/pretrain.sh 

This will pretrain the Moment-DETR model on the ASR captions for 100 epochs, the pretrained checkpoints and other experiment log files will be written into results. With the pretrained checkpoint, we can launch finetuning from a pretrained checkpoint PRETRAIN_CHECKPOINT_PATH as:

bash moment_detr/scripts/train.sh  --resume ${PRETRAIN_CHECKPOINT_PATH}

Note that this finetuning process is the same as standard training except that it initializes weights from a pretrained checkpoint.

Evaluation and Codalab Submission

Please check standalone_eval/README.md for details.

Acknowledgement

We thank Linjie Li for the helpful discussions. This code is based on detr and TVRetrieval XML. We used resources from mdetr, MMAction2, CLIP, SlowFast and HERO_Video_Feature_Extractor. We thank the authors for their awesome open-source contributions.

LICENSE

The annotation files are under CC BY-NC-SA 4.0 license, see ./data/LICENSE. All the code are under MIT license, see LICENSE.

Comments
  • About experiments on CharadesSTA dataset

    About experiments on CharadesSTA dataset

    Hi, I noticed that you also conduct experiments on CharadesSTA dataset. I'm wondering how you prepare the video feature in CharadesSTA dataset? Could you share the feature files you prepared?

    opened by xljh0520 8
  • About the annotations

    About the annotations

    Hi @jayleicn, thanks for your great work! I notice that in the annotation files, as shown below, the duration of a video (126s) does not match the actual duration (810s - 660s = 150s). May I ask that should I crop the original video to 126s before processing in this case?

    {
        "qid": 8737, 
        "query": "A family is playing basketball together on a green court outside.", 
        "duration": 126, 
        "vid": "bP5KfdFJzC4_660.0_810.0", 
        "relevant_windows": [[0, 16]],
        "relevant_clip_ids": [0, 1, 2, 3, 4, 5, 6, 7], 
        "saliency_scores": [[4, 1, 1], [4, 1, 1], [4, 2, 1], [4, 3, 2], [4, 3, 2], [4, 3, 3], [4, 3, 3], [4, 3, 2]]
    }
    
    opened by yeliudev 4
  • CodaLab Submission Error

    CodaLab Submission Error

    Hi, I recently generate the test results and validation results on CodaLab as the following structure.

    --Submit.zip
    ----hl_val_submission.jsonl
    ----hl_test_submission.jsonl
    

    The CodaLab gave me the error IOError: [Errno 2] No such file or directory: '/tmp/codalab/tmphfqu8Q/run/input/res/hl_test_submission.jsonl'

    How can I solve this problem?

    opened by vateye 3
  • Video feature extraction

    Video feature extraction

    Hi, thanks for your excellent work! I found that the provided video features include both clip_features and slow_fast features. When it comes to the run_on_video/run.py, the codes only extract the clip features. Is there a mistake here? Besides, could you please provide the run.py extracting both clip and slowfast features? Thank you.

    opened by fxqzb 2
  • About paper

    About paper

    hi, We think that mdetr has great potential, but we look at table 6 in the paper and find that the metics of moment retrieval on the charades-sta dataset is not much higher than that of ivg-dcl (in particular, ivg-dcl adopts C3d feature for video extractor and glove for text embedding), and your work uses clip feature + slowfast). Have you ever tested on other video grounding dataset, like activitynets?

    opened by BMEI1314 2
  • About dataset?

    About dataset?

    Good job. I have read the paper and the github repository, but I still don’t understand how the features such as clip_features, clip_sub_features, clip_text_features, slowfast_features, etc. under the features folder are extracted and the details of the features extracted? Can you describe it in detail if it is convenient?

    opened by dourcer 2
  • [Request for the approval in competition] Hello. can you approve the request?

    [Request for the approval in competition] Hello. can you approve the request?

    Hello.

    Thanks for the great work. Motivated by the work and the interesting topic, we sincerely hope to get approved to be in the competition.

    Thank you!!! Btw, Sorry for bothering you.

    Regards.

    opened by wjun0830 1
  • Meaning of GT saliency scores

    Meaning of GT saliency scores

    Thank you for your great work and open-source code.

    I have an issue with the GT saliency scores (only localized 2-sec clips), can you please explain briefly? besides, how Predicted saliency scores (for all 2-sec clip) corresponds to the previous term?

    Thanks!

    Best, Kevin

    Build models...
    Loading feature extractors...
    Loading CLIP models
    Loading trained Moment-DETR model...
    Run prediction...
    ------------------------------idx0
    >> query: Chef makes pizza and cuts it up.
    >> video_path: run_on_video/example/RoripwjYFp8_60.0_210.0.mp4
    >> GT moments: [[106, 122]]
    >> Predicted moments ([start_in_seconds, end_in_seconds, score]): [
        [49.967, 64.9129, 0.9421], 
        [66.4396, 81.0731, 0.9271], 
        [105.9434, 122.0372, 0.9234], 
        [93.2057, 103.3713, 0.2222], 
        ..., 
        [45.3834, 52.2183, 0.0005]
       ]
    >> GT saliency scores (only localized 2-sec clips):  # what it means?
        [[2, 3, 3], [2, 3, 3], ...]
    >> Predicted saliency scores (for all 2-sec clip):  # how this correspond to the GT saliency scores?
        [-0.9258, -0.8115, -0.7598, ..., 0.0739, 0.1068]  
    
    opened by QinghongLin 1
  • How do I make my dataset ?

    How do I make my dataset ?

    Hi, Congrats on the amazing work. I want to make a data set similar to QVHighlights in my research direction, I have a lot of questions? 1、What annotation tools do you use? And details in the annotation process. 2、How to use CLIP to extract QVHIGHLIGHTS text features ? Can you provide the specific code?

    opened by Yangaiei 1
  • About File missing in run_on_video

    About File missing in run_on_video

    Thank you for your wonderful work! However, when I tried to run your demo in folder run_on_video, the file bpe_simple_vocab_16e6.txt.gz for the tokenizer is missing. Can you provide this file?

    FileNotFoundError: [Errno 2] No such file or directory: 'moment_detr/run_on_video/clip/bpe_simple_vocab_16e6.txt.gz'

    opened by lmfethan 1
  • The meaning of

    The meaning of "tef"

    Hi, I have a question about the "tef" in vision feature:

    if self.use_tef:
        tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l
        tef_ed = tef_st + 1.0 / ctx_l
        tef = torch.stack([tef_st, tef_ed], dim=1)  # (Lv, 2)
        if self.use_video:
            model_inputs["video_feat"] = torch.cat(
                [model_inputs["video_feat"], tef], dim=1)  # (Lv, Dv+2)
        else:
            model_inputs["video_feat"] = tef
    

    What does "tef" mean in the visual feature? Thanks in advance.

    opened by vateye 1
  • Slowfast config setting

    Slowfast config setting

    Hi, thanks for your good work and released code!

    I have a question regarding the feature extractor: which setting did you adopt for the QVHighlight slowfast feature? e.g., SLOWFAST_8x8_R50.

    Thanks!

    Kevin

    opened by QinghongLin 0
  • predicted saliency scores

    predicted saliency scores

    1. How is the predicted saliency scores (for all 2-sec clip) calculated?
    >> Predicted saliency scores (for all 2-sec clip): 
        [-0.9258, -0.8115, -0.7598, ..., 0.0739, 0.1068]  
    
    1. Is it the average of the scores of three people? And why the predicted saliency scores (for all 2-sec clip) is negative.
    opened by Yangaiei 0
Releases(checkpoints)
Owner
Jie Lei 雷杰
UNC CS PhD student, vision+language.
Jie Lei 雷杰
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
An Open-Source Package for Neural Relation Extraction (NRE)

OpenNRE We have a DEMO website (http://opennre.thunlp.ai/). Try it out! OpenNRE is an open-source and extensible toolkit that provides a unified frame

THUNLP 3.9k Jan 03, 2023
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
Transcribing audio files using Hugging Face's implementation of Wav2Vec2 + "chain-linking" NLP tasks to combine speech-to-text with downstream tasks like translation and summarisation.

PART 2: CHAIN LINKING AUDIO-TO-TEXT NLP TASKS 2A: TRANSCRIBE-TRANSLATE-SENTIMENT-ANALYSIS In notebook3.0, I demo a simple workflow to: transcribe a lo

Chua Chin Hon 30 Jul 13, 2022
Creating a Feed of MISP Events from ThreatFox (by abuse.ch)

ThreatFox2Misp Creating a Feed of MISP Events from ThreatFox (by abuse.ch) What will it do? This will fetch IOCs from ThreatFox by Abuse.ch, convert t

17 Nov 22, 2022
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022
jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese.

jel: Japanese Entity Linker jel - Japanese Entity Linker - is Bi-encoder based entity linker for japanese. Usage Currently, link and question methods

izuna385 10 Jan 06, 2023
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
This is the source code of RPG (Reward-Randomized Policy Gradient)

RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (

40 Nov 25, 2022
Subtitle Workshop (subshop): tools to download and synchronize subtitles

SUBSHOP Tools to download, remove ads, and synchronize subtitles. SUBSHOP Purpose Limitations Required Web Credentials Installation, Configuration, an

Joe D 4 Feb 13, 2022
SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Introduction This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper. Chen, Jia, et al. "Axiomatically Re

Jia Chen 17 Nov 09, 2022
Lingtrain Aligner — ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Sergei Averkiev 76 Dec 14, 2022
Must-read papers on improving efficiency for pre-trained language models.

Must-read papers on improving efficiency for pre-trained language models.

Tobias Lee 89 Jan 03, 2023
Switch spaces for knowledge graph embeddings

SwisE Switch spaces for knowledge graph embeddings. Requirements: python3 pytorch numpy tqdm Reproduce the results To reproduce the reported results,

Shuai Zhang 4 Dec 01, 2021
A sentence aligner for comparable corpora

About Yalign is a tool for extracting parallel sentences from comparable corpora. Statistical Machine Translation relies on parallel corpora (eg.. eur

Machinalis 128 Aug 24, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
Installation, test and evaluation of Scribosermo speech-to-text engine

Scribosermo STT Setup Scribosermo is a LGPL licensed, open-source speech recognition engine to "Train fast Speech-to-Text networks in different langua

Florian Quirin 3 Jun 20, 2022
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022