QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Overview

Moment-DETR

QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Jie Lei, Tamara L. Berg, Mohit Bansal

For dataset details, please check data/README.md

Getting Started

Prerequisites

  1. Clone this repo
git clone https://github.com/jayleicn/moment_detr.git
cd moment_detr
  1. Prepare feature files

Download moment_detr_features.tar.gz (8GB), extract it under project root directory:

tar -xf path/to/moment_detr_features.tar.gz
  1. Install dependencies.

This code requires Python 3.7, PyTorch, and a few other Python libraries. We recommend creating conda environment and installing all the dependencies as follows:

# create conda env
conda create --name moment_detr python=3.7
# activate env
conda actiavte moment_detr
# install pytorch with CUDA 11.0
conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch
# install other python packages
pip install tqdm ipython easydict tensorboard tabulate scikit-learn pandas

Training

Training can be launched by running the following command:

bash moment_detr/scripts/train.sh 

This will train Moment-DETR for 200 epochs on the QVHighlights train split, with SlowFast and Open AI CLIP features. The training is very fast, it can be done within 4 hours using a single RTX 2080Ti GPU. The checkpoints and other experiment log files will be written into results. For training under different settings, you can append additional command line flags to the command above. For example, if you want to train the model without the saliency loss (by setting the corresponding loss weight to 0):

bash moment_detr/scripts/train.sh --lw_saliency 0

For more configurable options, please checkout our config file moment_detr/config.py.

Inference

Once the model is trained, you can use the following command for inference:

bash moment_detr/scripts/inference.sh CHECKPOINT_PATH SPLIT_NAME  

where CHECKPOINT_PATH is the path to the saved checkpoint, SPLIT_NAME is the split name for inference, can be one of val and test.

Pretraining and Finetuning

Moment-DETR utilizes ASR captions for weakly supervised pretraining. To launch pretraining, run:

bash moment_detr/scripts/pretrain.sh 

This will pretrain the Moment-DETR model on the ASR captions for 100 epochs, the pretrained checkpoints and other experiment log files will be written into results. With the pretrained checkpoint, we can launch finetuning from a pretrained checkpoint PRETRAIN_CHECKPOINT_PATH as:

bash moment_detr/scripts/train.sh  --resume ${PRETRAIN_CHECKPOINT_PATH}

Note that this finetuning process is the same as standard training except that it initializes weights from a pretrained checkpoint.

Evaluation and Codalab Submission

Please check standalone_eval/README.md for details.

Acknowledgement

We thank Linjie Li for the helpful discussions. This code is based on detr and TVRetrieval XML. We used resources from mdetr, MMAction2, CLIP, SlowFast and HERO_Video_Feature_Extractor. We thank the authors for their awesome open-source contributions.

LICENSE

The annotation files are under CC BY-NC-SA 4.0 license, see ./data/LICENSE. All the code are under MIT license, see LICENSE.

Comments
  • About experiments on CharadesSTA dataset

    About experiments on CharadesSTA dataset

    Hi, I noticed that you also conduct experiments on CharadesSTA dataset. I'm wondering how you prepare the video feature in CharadesSTA dataset? Could you share the feature files you prepared?

    opened by xljh0520 8
  • About the annotations

    About the annotations

    Hi @jayleicn, thanks for your great work! I notice that in the annotation files, as shown below, the duration of a video (126s) does not match the actual duration (810s - 660s = 150s). May I ask that should I crop the original video to 126s before processing in this case?

    {
        "qid": 8737, 
        "query": "A family is playing basketball together on a green court outside.", 
        "duration": 126, 
        "vid": "bP5KfdFJzC4_660.0_810.0", 
        "relevant_windows": [[0, 16]],
        "relevant_clip_ids": [0, 1, 2, 3, 4, 5, 6, 7], 
        "saliency_scores": [[4, 1, 1], [4, 1, 1], [4, 2, 1], [4, 3, 2], [4, 3, 2], [4, 3, 3], [4, 3, 3], [4, 3, 2]]
    }
    
    opened by yeliudev 4
  • CodaLab Submission Error

    CodaLab Submission Error

    Hi, I recently generate the test results and validation results on CodaLab as the following structure.

    --Submit.zip
    ----hl_val_submission.jsonl
    ----hl_test_submission.jsonl
    

    The CodaLab gave me the error IOError: [Errno 2] No such file or directory: '/tmp/codalab/tmphfqu8Q/run/input/res/hl_test_submission.jsonl'

    How can I solve this problem?

    opened by vateye 3
  • Video feature extraction

    Video feature extraction

    Hi, thanks for your excellent work! I found that the provided video features include both clip_features and slow_fast features. When it comes to the run_on_video/run.py, the codes only extract the clip features. Is there a mistake here? Besides, could you please provide the run.py extracting both clip and slowfast features? Thank you.

    opened by fxqzb 2
  • About paper

    About paper

    hi, We think that mdetr has great potential, but we look at table 6 in the paper and find that the metics of moment retrieval on the charades-sta dataset is not much higher than that of ivg-dcl (in particular, ivg-dcl adopts C3d feature for video extractor and glove for text embedding), and your work uses clip feature + slowfast). Have you ever tested on other video grounding dataset, like activitynets?

    opened by BMEI1314 2
  • About dataset?

    About dataset?

    Good job. I have read the paper and the github repository, but I still don’t understand how the features such as clip_features, clip_sub_features, clip_text_features, slowfast_features, etc. under the features folder are extracted and the details of the features extracted? Can you describe it in detail if it is convenient?

    opened by dourcer 2
  • [Request for the approval in competition] Hello. can you approve the request?

    [Request for the approval in competition] Hello. can you approve the request?

    Hello.

    Thanks for the great work. Motivated by the work and the interesting topic, we sincerely hope to get approved to be in the competition.

    Thank you!!! Btw, Sorry for bothering you.

    Regards.

    opened by wjun0830 1
  • Meaning of GT saliency scores

    Meaning of GT saliency scores

    Thank you for your great work and open-source code.

    I have an issue with the GT saliency scores (only localized 2-sec clips), can you please explain briefly? besides, how Predicted saliency scores (for all 2-sec clip) corresponds to the previous term?

    Thanks!

    Best, Kevin

    Build models...
    Loading feature extractors...
    Loading CLIP models
    Loading trained Moment-DETR model...
    Run prediction...
    ------------------------------idx0
    >> query: Chef makes pizza and cuts it up.
    >> video_path: run_on_video/example/RoripwjYFp8_60.0_210.0.mp4
    >> GT moments: [[106, 122]]
    >> Predicted moments ([start_in_seconds, end_in_seconds, score]): [
        [49.967, 64.9129, 0.9421], 
        [66.4396, 81.0731, 0.9271], 
        [105.9434, 122.0372, 0.9234], 
        [93.2057, 103.3713, 0.2222], 
        ..., 
        [45.3834, 52.2183, 0.0005]
       ]
    >> GT saliency scores (only localized 2-sec clips):  # what it means?
        [[2, 3, 3], [2, 3, 3], ...]
    >> Predicted saliency scores (for all 2-sec clip):  # how this correspond to the GT saliency scores?
        [-0.9258, -0.8115, -0.7598, ..., 0.0739, 0.1068]  
    
    opened by QinghongLin 1
  • How do I make my dataset ?

    How do I make my dataset ?

    Hi, Congrats on the amazing work. I want to make a data set similar to QVHighlights in my research direction, I have a lot of questions? 1、What annotation tools do you use? And details in the annotation process. 2、How to use CLIP to extract QVHIGHLIGHTS text features ? Can you provide the specific code?

    opened by Yangaiei 1
  • About File missing in run_on_video

    About File missing in run_on_video

    Thank you for your wonderful work! However, when I tried to run your demo in folder run_on_video, the file bpe_simple_vocab_16e6.txt.gz for the tokenizer is missing. Can you provide this file?

    FileNotFoundError: [Errno 2] No such file or directory: 'moment_detr/run_on_video/clip/bpe_simple_vocab_16e6.txt.gz'

    opened by lmfethan 1
  • The meaning of

    The meaning of "tef"

    Hi, I have a question about the "tef" in vision feature:

    if self.use_tef:
        tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l
        tef_ed = tef_st + 1.0 / ctx_l
        tef = torch.stack([tef_st, tef_ed], dim=1)  # (Lv, 2)
        if self.use_video:
            model_inputs["video_feat"] = torch.cat(
                [model_inputs["video_feat"], tef], dim=1)  # (Lv, Dv+2)
        else:
            model_inputs["video_feat"] = tef
    

    What does "tef" mean in the visual feature? Thanks in advance.

    opened by vateye 1
  • Slowfast config setting

    Slowfast config setting

    Hi, thanks for your good work and released code!

    I have a question regarding the feature extractor: which setting did you adopt for the QVHighlight slowfast feature? e.g., SLOWFAST_8x8_R50.

    Thanks!

    Kevin

    opened by QinghongLin 0
  • predicted saliency scores

    predicted saliency scores

    1. How is the predicted saliency scores (for all 2-sec clip) calculated?
    >> Predicted saliency scores (for all 2-sec clip): 
        [-0.9258, -0.8115, -0.7598, ..., 0.0739, 0.1068]  
    
    1. Is it the average of the scores of three people? And why the predicted saliency scores (for all 2-sec clip) is negative.
    opened by Yangaiei 0
Releases(checkpoints)
Owner
Jie Lei 雷杰
UNC CS PhD student, vision+language.
Jie Lei 雷杰
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

1 Nov 08, 2021
Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

286 Dec 06, 2022
A fast and easy implementation of Transformer with PyTorch.

FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which

宁羽 7 Jul 18, 2022
An end to end ASR Transformer model training repo

END TO END ASR TRANSFORMER 本项目基于transformer 6*encoder+6*decoder的基本结构构造的端到端的语音识别系统 Model Instructions 1.数据准备: 自行下载数据,遵循文件结构如下: ├── data │ ├── train │

旷视天元 MegEngine 10 Jul 19, 2022
Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR

Speech_38_ru_commands Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR Программа умеет распознавать 38 ключевы

Andrey 9 May 05, 2022
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
Saptak Bhoumik 14 May 24, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker

Multimedia Research 485 Jan 04, 2023
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models

PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised

Google Research 1.4k Dec 22, 2022
Azure Text-to-speech service for Home Assistant

Azure Text-to-speech service for Home Assistant The Azure text-to-speech platform uses online Azure Text-to-Speech cognitive service to read a text wi

Yassine Selmi 2 Aug 06, 2022
Machine learning classifiers to predict American Sign Language .

ASL-Classifiers American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United Stat

Tarek idrees 0 Feb 08, 2022
2021语言与智能技术竞赛:机器阅读理解任务

LICS2021 MRC 1. 项目&任务介绍 本项目基于官方给定的baseline(DuReader-Checklist-BASELINE)进行二次改造,对整个代码框架做了简单的重构,对核心网络结构添加了注释,解耦了数据读取的模块,并添加了阈值确认的功能,一些小的细节也做了改进。 本次任务为202

roar 29 Dec 05, 2022
This is a really simple text-to-speech app made with python and tkinter.

Tkinter Text-to-Speech App by Souvik Roy This is a really simple tkinter app which converts the text you have entered into a speech. It is created wit

Souvik Roy 1 Dec 21, 2021
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

Tao Lei 14 Dec 12, 2022