QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Overview

Moment-DETR

QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Jie Lei, Tamara L. Berg, Mohit Bansal

For dataset details, please check data/README.md

Getting Started

Prerequisites

  1. Clone this repo
git clone https://github.com/jayleicn/moment_detr.git
cd moment_detr
  1. Prepare feature files

Download moment_detr_features.tar.gz (8GB), extract it under project root directory:

tar -xf path/to/moment_detr_features.tar.gz
  1. Install dependencies.

This code requires Python 3.7, PyTorch, and a few other Python libraries. We recommend creating conda environment and installing all the dependencies as follows:

# create conda env
conda create --name moment_detr python=3.7
# activate env
conda actiavte moment_detr
# install pytorch with CUDA 11.0
conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch
# install other python packages
pip install tqdm ipython easydict tensorboard tabulate scikit-learn pandas

Training

Training can be launched by running the following command:

bash moment_detr/scripts/train.sh 

This will train Moment-DETR for 200 epochs on the QVHighlights train split, with SlowFast and Open AI CLIP features. The training is very fast, it can be done within 4 hours using a single RTX 2080Ti GPU. The checkpoints and other experiment log files will be written into results. For training under different settings, you can append additional command line flags to the command above. For example, if you want to train the model without the saliency loss (by setting the corresponding loss weight to 0):

bash moment_detr/scripts/train.sh --lw_saliency 0

For more configurable options, please checkout our config file moment_detr/config.py.

Inference

Once the model is trained, you can use the following command for inference:

bash moment_detr/scripts/inference.sh CHECKPOINT_PATH SPLIT_NAME  

where CHECKPOINT_PATH is the path to the saved checkpoint, SPLIT_NAME is the split name for inference, can be one of val and test.

Pretraining and Finetuning

Moment-DETR utilizes ASR captions for weakly supervised pretraining. To launch pretraining, run:

bash moment_detr/scripts/pretrain.sh 

This will pretrain the Moment-DETR model on the ASR captions for 100 epochs, the pretrained checkpoints and other experiment log files will be written into results. With the pretrained checkpoint, we can launch finetuning from a pretrained checkpoint PRETRAIN_CHECKPOINT_PATH as:

bash moment_detr/scripts/train.sh  --resume ${PRETRAIN_CHECKPOINT_PATH}

Note that this finetuning process is the same as standard training except that it initializes weights from a pretrained checkpoint.

Evaluation and Codalab Submission

Please check standalone_eval/README.md for details.

Acknowledgement

We thank Linjie Li for the helpful discussions. This code is based on detr and TVRetrieval XML. We used resources from mdetr, MMAction2, CLIP, SlowFast and HERO_Video_Feature_Extractor. We thank the authors for their awesome open-source contributions.

LICENSE

The annotation files are under CC BY-NC-SA 4.0 license, see ./data/LICENSE. All the code are under MIT license, see LICENSE.

Comments
  • About experiments on CharadesSTA dataset

    About experiments on CharadesSTA dataset

    Hi, I noticed that you also conduct experiments on CharadesSTA dataset. I'm wondering how you prepare the video feature in CharadesSTA dataset? Could you share the feature files you prepared?

    opened by xljh0520 8
  • About the annotations

    About the annotations

    Hi @jayleicn, thanks for your great work! I notice that in the annotation files, as shown below, the duration of a video (126s) does not match the actual duration (810s - 660s = 150s). May I ask that should I crop the original video to 126s before processing in this case?

    {
        "qid": 8737, 
        "query": "A family is playing basketball together on a green court outside.", 
        "duration": 126, 
        "vid": "bP5KfdFJzC4_660.0_810.0", 
        "relevant_windows": [[0, 16]],
        "relevant_clip_ids": [0, 1, 2, 3, 4, 5, 6, 7], 
        "saliency_scores": [[4, 1, 1], [4, 1, 1], [4, 2, 1], [4, 3, 2], [4, 3, 2], [4, 3, 3], [4, 3, 3], [4, 3, 2]]
    }
    
    opened by yeliudev 4
  • CodaLab Submission Error

    CodaLab Submission Error

    Hi, I recently generate the test results and validation results on CodaLab as the following structure.

    --Submit.zip
    ----hl_val_submission.jsonl
    ----hl_test_submission.jsonl
    

    The CodaLab gave me the error IOError: [Errno 2] No such file or directory: '/tmp/codalab/tmphfqu8Q/run/input/res/hl_test_submission.jsonl'

    How can I solve this problem?

    opened by vateye 3
  • Video feature extraction

    Video feature extraction

    Hi, thanks for your excellent work! I found that the provided video features include both clip_features and slow_fast features. When it comes to the run_on_video/run.py, the codes only extract the clip features. Is there a mistake here? Besides, could you please provide the run.py extracting both clip and slowfast features? Thank you.

    opened by fxqzb 2
  • About paper

    About paper

    hi, We think that mdetr has great potential, but we look at table 6 in the paper and find that the metics of moment retrieval on the charades-sta dataset is not much higher than that of ivg-dcl (in particular, ivg-dcl adopts C3d feature for video extractor and glove for text embedding), and your work uses clip feature + slowfast). Have you ever tested on other video grounding dataset, like activitynets?

    opened by BMEI1314 2
  • About dataset?

    About dataset?

    Good job. I have read the paper and the github repository, but I still don’t understand how the features such as clip_features, clip_sub_features, clip_text_features, slowfast_features, etc. under the features folder are extracted and the details of the features extracted? Can you describe it in detail if it is convenient?

    opened by dourcer 2
  • [Request for the approval in competition] Hello. can you approve the request?

    [Request for the approval in competition] Hello. can you approve the request?

    Hello.

    Thanks for the great work. Motivated by the work and the interesting topic, we sincerely hope to get approved to be in the competition.

    Thank you!!! Btw, Sorry for bothering you.

    Regards.

    opened by wjun0830 1
  • Meaning of GT saliency scores

    Meaning of GT saliency scores

    Thank you for your great work and open-source code.

    I have an issue with the GT saliency scores (only localized 2-sec clips), can you please explain briefly? besides, how Predicted saliency scores (for all 2-sec clip) corresponds to the previous term?

    Thanks!

    Best, Kevin

    Build models...
    Loading feature extractors...
    Loading CLIP models
    Loading trained Moment-DETR model...
    Run prediction...
    ------------------------------idx0
    >> query: Chef makes pizza and cuts it up.
    >> video_path: run_on_video/example/RoripwjYFp8_60.0_210.0.mp4
    >> GT moments: [[106, 122]]
    >> Predicted moments ([start_in_seconds, end_in_seconds, score]): [
        [49.967, 64.9129, 0.9421], 
        [66.4396, 81.0731, 0.9271], 
        [105.9434, 122.0372, 0.9234], 
        [93.2057, 103.3713, 0.2222], 
        ..., 
        [45.3834, 52.2183, 0.0005]
       ]
    >> GT saliency scores (only localized 2-sec clips):  # what it means?
        [[2, 3, 3], [2, 3, 3], ...]
    >> Predicted saliency scores (for all 2-sec clip):  # how this correspond to the GT saliency scores?
        [-0.9258, -0.8115, -0.7598, ..., 0.0739, 0.1068]  
    
    opened by QinghongLin 1
  • How do I make my dataset ?

    How do I make my dataset ?

    Hi, Congrats on the amazing work. I want to make a data set similar to QVHighlights in my research direction, I have a lot of questions? 1、What annotation tools do you use? And details in the annotation process. 2、How to use CLIP to extract QVHIGHLIGHTS text features ? Can you provide the specific code?

    opened by Yangaiei 1
  • About File missing in run_on_video

    About File missing in run_on_video

    Thank you for your wonderful work! However, when I tried to run your demo in folder run_on_video, the file bpe_simple_vocab_16e6.txt.gz for the tokenizer is missing. Can you provide this file?

    FileNotFoundError: [Errno 2] No such file or directory: 'moment_detr/run_on_video/clip/bpe_simple_vocab_16e6.txt.gz'

    opened by lmfethan 1
  • The meaning of

    The meaning of "tef"

    Hi, I have a question about the "tef" in vision feature:

    if self.use_tef:
        tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l
        tef_ed = tef_st + 1.0 / ctx_l
        tef = torch.stack([tef_st, tef_ed], dim=1)  # (Lv, 2)
        if self.use_video:
            model_inputs["video_feat"] = torch.cat(
                [model_inputs["video_feat"], tef], dim=1)  # (Lv, Dv+2)
        else:
            model_inputs["video_feat"] = tef
    

    What does "tef" mean in the visual feature? Thanks in advance.

    opened by vateye 1
  • Slowfast config setting

    Slowfast config setting

    Hi, thanks for your good work and released code!

    I have a question regarding the feature extractor: which setting did you adopt for the QVHighlight slowfast feature? e.g., SLOWFAST_8x8_R50.

    Thanks!

    Kevin

    opened by QinghongLin 0
  • predicted saliency scores

    predicted saliency scores

    1. How is the predicted saliency scores (for all 2-sec clip) calculated?
    >> Predicted saliency scores (for all 2-sec clip): 
        [-0.9258, -0.8115, -0.7598, ..., 0.0739, 0.1068]  
    
    1. Is it the average of the scores of three people? And why the predicted saliency scores (for all 2-sec clip) is negative.
    opened by Yangaiei 0
Releases(checkpoints)
Owner
Jie Lei 雷杰
UNC CS PhD student, vision+language.
Jie Lei 雷杰
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Vincent Herrmann 858 Dec 27, 2022
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based

Naman Rastogi 4 Jan 01, 2023
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
DVC-NLP-Simple-usecase

dvc-NLP-simple-usecase DVC NLP project Reference repository: official reference repo DVC STUDIO MY View Bag of Words- Krish Naik TF-IDF- Krish Naik ST

SUNNY BHAVEEN CHANDRA 2 Oct 02, 2022
Ongoing research training transformer language models at scale, including: BERT & GPT-2

What is this fork of Megatron-LM and Megatron-DeepSpeed This is a detached fork of https://github.com/microsoft/Megatron-DeepSpeed, which in itself is

BigScience Workshop 316 Jan 03, 2023
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun

Yen-Chun Chen 680 Dec 24, 2022
Use fastai-v2 with HuggingFace's pretrained transformers

FastHugs Use fastai v2 with HuggingFace's pretrained transformers, see the notebooks below depending on your task: Text classification: fasthugs_seq_c

Morgan McGuire 111 Nov 16, 2022
中文問句產生器;使用台達電閱讀理解資料集(DRCD)

Transformer QG on DRCD The inputs of the model refers to we integrate C and A into a new C' in the following form. C' = [c1, c2, ..., [HL], a1, ..., a

Philip 1 Oct 22, 2021
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Yale-LILY 213 Jan 04, 2023
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022
Natural Language Processing with transformers

we want to create a repo to illustrate usage of transformers in chinese

Datawhale 763 Dec 27, 2022
2021语言与智能技术竞赛:机器阅读理解任务

LICS2021 MRC 1. 项目&任务介绍 本项目基于官方给定的baseline(DuReader-Checklist-BASELINE)进行二次改造,对整个代码框架做了简单的重构,对核心网络结构添加了注释,解耦了数据读取的模块,并添加了阈值确认的功能,一些小的细节也做了改进。 本次任务为202

roar 29 Dec 05, 2022
Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology (EARIST)

🤖 Coeus - EARIST A.C.E 💬 Coeus is an Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology,

Dids Irwyn Reyes 3 Oct 14, 2022
sangha, pronounced "suhng-guh", is a social networking, booking platform where students and teachers can share their practice.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Courtney Newcomer 17 Sep 29, 2021
Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries.

VirtualAssistant Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries. Third Party Libraries us

Logadheep 1 Nov 27, 2021