QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Overview

Moment-DETR

QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries

Jie Lei, Tamara L. Berg, Mohit Bansal

For dataset details, please check data/README.md

Getting Started

Prerequisites

  1. Clone this repo
git clone https://github.com/jayleicn/moment_detr.git
cd moment_detr
  1. Prepare feature files

Download moment_detr_features.tar.gz (8GB), extract it under project root directory:

tar -xf path/to/moment_detr_features.tar.gz
  1. Install dependencies.

This code requires Python 3.7, PyTorch, and a few other Python libraries. We recommend creating conda environment and installing all the dependencies as follows:

# create conda env
conda create --name moment_detr python=3.7
# activate env
conda actiavte moment_detr
# install pytorch with CUDA 11.0
conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch
# install other python packages
pip install tqdm ipython easydict tensorboard tabulate scikit-learn pandas

Training

Training can be launched by running the following command:

bash moment_detr/scripts/train.sh 

This will train Moment-DETR for 200 epochs on the QVHighlights train split, with SlowFast and Open AI CLIP features. The training is very fast, it can be done within 4 hours using a single RTX 2080Ti GPU. The checkpoints and other experiment log files will be written into results. For training under different settings, you can append additional command line flags to the command above. For example, if you want to train the model without the saliency loss (by setting the corresponding loss weight to 0):

bash moment_detr/scripts/train.sh --lw_saliency 0

For more configurable options, please checkout our config file moment_detr/config.py.

Inference

Once the model is trained, you can use the following command for inference:

bash moment_detr/scripts/inference.sh CHECKPOINT_PATH SPLIT_NAME  

where CHECKPOINT_PATH is the path to the saved checkpoint, SPLIT_NAME is the split name for inference, can be one of val and test.

Pretraining and Finetuning

Moment-DETR utilizes ASR captions for weakly supervised pretraining. To launch pretraining, run:

bash moment_detr/scripts/pretrain.sh 

This will pretrain the Moment-DETR model on the ASR captions for 100 epochs, the pretrained checkpoints and other experiment log files will be written into results. With the pretrained checkpoint, we can launch finetuning from a pretrained checkpoint PRETRAIN_CHECKPOINT_PATH as:

bash moment_detr/scripts/train.sh  --resume ${PRETRAIN_CHECKPOINT_PATH}

Note that this finetuning process is the same as standard training except that it initializes weights from a pretrained checkpoint.

Evaluation and Codalab Submission

Please check standalone_eval/README.md for details.

Acknowledgement

We thank Linjie Li for the helpful discussions. This code is based on detr and TVRetrieval XML. We used resources from mdetr, MMAction2, CLIP, SlowFast and HERO_Video_Feature_Extractor. We thank the authors for their awesome open-source contributions.

LICENSE

The annotation files are under CC BY-NC-SA 4.0 license, see ./data/LICENSE. All the code are under MIT license, see LICENSE.

Comments
  • About experiments on CharadesSTA dataset

    About experiments on CharadesSTA dataset

    Hi, I noticed that you also conduct experiments on CharadesSTA dataset. I'm wondering how you prepare the video feature in CharadesSTA dataset? Could you share the feature files you prepared?

    opened by xljh0520 8
  • About the annotations

    About the annotations

    Hi @jayleicn, thanks for your great work! I notice that in the annotation files, as shown below, the duration of a video (126s) does not match the actual duration (810s - 660s = 150s). May I ask that should I crop the original video to 126s before processing in this case?

    {
        "qid": 8737, 
        "query": "A family is playing basketball together on a green court outside.", 
        "duration": 126, 
        "vid": "bP5KfdFJzC4_660.0_810.0", 
        "relevant_windows": [[0, 16]],
        "relevant_clip_ids": [0, 1, 2, 3, 4, 5, 6, 7], 
        "saliency_scores": [[4, 1, 1], [4, 1, 1], [4, 2, 1], [4, 3, 2], [4, 3, 2], [4, 3, 3], [4, 3, 3], [4, 3, 2]]
    }
    
    opened by yeliudev 4
  • CodaLab Submission Error

    CodaLab Submission Error

    Hi, I recently generate the test results and validation results on CodaLab as the following structure.

    --Submit.zip
    ----hl_val_submission.jsonl
    ----hl_test_submission.jsonl
    

    The CodaLab gave me the error IOError: [Errno 2] No such file or directory: '/tmp/codalab/tmphfqu8Q/run/input/res/hl_test_submission.jsonl'

    How can I solve this problem?

    opened by vateye 3
  • Video feature extraction

    Video feature extraction

    Hi, thanks for your excellent work! I found that the provided video features include both clip_features and slow_fast features. When it comes to the run_on_video/run.py, the codes only extract the clip features. Is there a mistake here? Besides, could you please provide the run.py extracting both clip and slowfast features? Thank you.

    opened by fxqzb 2
  • About paper

    About paper

    hi, We think that mdetr has great potential, but we look at table 6 in the paper and find that the metics of moment retrieval on the charades-sta dataset is not much higher than that of ivg-dcl (in particular, ivg-dcl adopts C3d feature for video extractor and glove for text embedding), and your work uses clip feature + slowfast). Have you ever tested on other video grounding dataset, like activitynets?

    opened by BMEI1314 2
  • About dataset?

    About dataset?

    Good job. I have read the paper and the github repository, but I still don’t understand how the features such as clip_features, clip_sub_features, clip_text_features, slowfast_features, etc. under the features folder are extracted and the details of the features extracted? Can you describe it in detail if it is convenient?

    opened by dourcer 2
  • [Request for the approval in competition] Hello. can you approve the request?

    [Request for the approval in competition] Hello. can you approve the request?

    Hello.

    Thanks for the great work. Motivated by the work and the interesting topic, we sincerely hope to get approved to be in the competition.

    Thank you!!! Btw, Sorry for bothering you.

    Regards.

    opened by wjun0830 1
  • Meaning of GT saliency scores

    Meaning of GT saliency scores

    Thank you for your great work and open-source code.

    I have an issue with the GT saliency scores (only localized 2-sec clips), can you please explain briefly? besides, how Predicted saliency scores (for all 2-sec clip) corresponds to the previous term?

    Thanks!

    Best, Kevin

    Build models...
    Loading feature extractors...
    Loading CLIP models
    Loading trained Moment-DETR model...
    Run prediction...
    ------------------------------idx0
    >> query: Chef makes pizza and cuts it up.
    >> video_path: run_on_video/example/RoripwjYFp8_60.0_210.0.mp4
    >> GT moments: [[106, 122]]
    >> Predicted moments ([start_in_seconds, end_in_seconds, score]): [
        [49.967, 64.9129, 0.9421], 
        [66.4396, 81.0731, 0.9271], 
        [105.9434, 122.0372, 0.9234], 
        [93.2057, 103.3713, 0.2222], 
        ..., 
        [45.3834, 52.2183, 0.0005]
       ]
    >> GT saliency scores (only localized 2-sec clips):  # what it means?
        [[2, 3, 3], [2, 3, 3], ...]
    >> Predicted saliency scores (for all 2-sec clip):  # how this correspond to the GT saliency scores?
        [-0.9258, -0.8115, -0.7598, ..., 0.0739, 0.1068]  
    
    opened by QinghongLin 1
  • How do I make my dataset ?

    How do I make my dataset ?

    Hi, Congrats on the amazing work. I want to make a data set similar to QVHighlights in my research direction, I have a lot of questions? 1、What annotation tools do you use? And details in the annotation process. 2、How to use CLIP to extract QVHIGHLIGHTS text features ? Can you provide the specific code?

    opened by Yangaiei 1
  • About File missing in run_on_video

    About File missing in run_on_video

    Thank you for your wonderful work! However, when I tried to run your demo in folder run_on_video, the file bpe_simple_vocab_16e6.txt.gz for the tokenizer is missing. Can you provide this file?

    FileNotFoundError: [Errno 2] No such file or directory: 'moment_detr/run_on_video/clip/bpe_simple_vocab_16e6.txt.gz'

    opened by lmfethan 1
  • The meaning of

    The meaning of "tef"

    Hi, I have a question about the "tef" in vision feature:

    if self.use_tef:
        tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l
        tef_ed = tef_st + 1.0 / ctx_l
        tef = torch.stack([tef_st, tef_ed], dim=1)  # (Lv, 2)
        if self.use_video:
            model_inputs["video_feat"] = torch.cat(
                [model_inputs["video_feat"], tef], dim=1)  # (Lv, Dv+2)
        else:
            model_inputs["video_feat"] = tef
    

    What does "tef" mean in the visual feature? Thanks in advance.

    opened by vateye 1
  • Slowfast config setting

    Slowfast config setting

    Hi, thanks for your good work and released code!

    I have a question regarding the feature extractor: which setting did you adopt for the QVHighlight slowfast feature? e.g., SLOWFAST_8x8_R50.

    Thanks!

    Kevin

    opened by QinghongLin 0
  • predicted saliency scores

    predicted saliency scores

    1. How is the predicted saliency scores (for all 2-sec clip) calculated?
    >> Predicted saliency scores (for all 2-sec clip): 
        [-0.9258, -0.8115, -0.7598, ..., 0.0739, 0.1068]  
    
    1. Is it the average of the scores of three people? And why the predicted saliency scores (for all 2-sec clip) is negative.
    opened by Yangaiei 0
Releases(checkpoints)
Owner
Jie Lei 雷杰
UNC CS PhD student, vision+language.
Jie Lei 雷杰
Repository for fine-tuning Transformers 🤗 based seq2seq speech models in JAX/Flax.

Seq2Seq Speech in JAX A JAX/Flax repository for combining a pre-trained speech encoder model (e.g. Wav2Vec2, HuBERT, WavLM) with a pre-trained text de

Sanchit Gandhi 21 Dec 14, 2022
The code from the whylogs workshop in DataTalks.Club on 29 March 2022

whylogs Workshop The code from the whylogs workshop in DataTalks.Club on 29 March 2022 whylogs - The open source standard for data logging (Don't forg

DataTalksClub 12 Sep 05, 2022
Code and data accompanying Natural Language Processing with PyTorch

Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning By Delip Rao and Brian McMahan Welcome. This is a

Joostware 1.8k Jan 01, 2023
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.

ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia

Facebook Research 9.7k Jan 09, 2023
A Plover python dictionary allowing for consistent symbol input with specification of attachment and capitalisation in one stroke.

Emily's Symbol Dictionary Design This dictionary was created with the following goals in mind: Have a consistent method to type (pretty much) every sy

Emily 68 Jan 07, 2023
A fast and lightweight python-based CTC beam search decoder for speech recognition.

pyctcdecode A fast and feature-rich CTC beam search decoder for speech recognition written in Python, providing n-gram (kenlm) language model support

Kensho 315 Dec 21, 2022
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Index different CKAN entities in Solr, not just datasets

ckanext-sitesearch Index different CKAN entities in Solr, not just datasets Requirements This extension requires CKAN 2.9 or higher and Python 3 Featu

Open Knowledge Foundation 3 Dec 02, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
Code for the paper PermuteFormer

PermuteFormer This repo includes codes for the paper PermuteFormer: Efficient Relative Position Encoding for Long Sequences. Directory long_range_aren

Peng Chen 42 Mar 16, 2022
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
pyMorfologik MorfologikpyMorfologik - Python binding for Morfologik.

Python binding for Morfologik Morfologik is Polish morphological analyzer. For more information see http://github.com/morfologik/morfologik-stemming/

Damian Mirecki 18 Dec 29, 2021
Poetry PEP 517 Build Backend & Core Utilities

Poetry Core A PEP 517 build backend implementation developed for Poetry. This project is intended to be a light weight, fully compliant, self-containe

Poetry 293 Jan 02, 2023
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

hellonlp 30 Dec 12, 2022