Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Related tags

Text Data & NLPWake
Overview

Wake

Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Abstract

استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec

با رشد روز افزون اسناد و متون الکترونیکی به زبان فارسی، به کارگیری روش­هایی سریع و ارزان برای دسترسی بـه متـون مورد نظر از میان مجموعه وسیع این مستندات، اهمیت بیشتری می­یابد. برای رسیدن به این هدف، استخراج کلمات کلیدی که بیانگر مضمون اصلی متن باشند، روشی بسیار مؤثر است. تعداد تکرار یک کلمه در متن نمی­تواند نشان­دهنده­ اهمیت یک کلمه و کلیدی بودن آن باشد. همچنین در اکثر روش­های استخراج کلمات کلیدی مفهوم و معنای متن نادیده گرفته می­شوند. از طرفی دیگر بدون ساختار بودن متون جدید در اخبار و اسناد الکترونیکی، استخراج این کلمات را مشکل می­سازد. در این مقاله روشی بدون نظارت و خودکار برای استخراج این کلمات در زبان فارسی که دارای ساختار مناسبی نمی­باشد، پیشنهاد شده است که نه تنها احتمال رخ دادن کلمه در متن و تعداد تکرار آن را در نظر می­گیرد، بلکه با آموزش مدل word2vec روی متن، مفهوم و معنای متن را نیز درک می­کند. در روش پیشنهادی که روشی ترکیبی از دو مدل آماری و یادگیری ماشین می­باشد، پس از آموزش word2vec روی متن، کلماتی که با سایر کلمات دارای فاصله­ کمی بوده استخراج شده و سپس با استفاده از هم­رخدادی و فرکانس رابطه­ای آماری برای محاسبه امتیاز پیشنهاد شده است. درنهایت با استفاده از حدآستانه کلمات با امتیاز بالاتر به‌عنوان کلمه کلیدی در نظر گرفته می­شوند. ارزیابی­­ها بیانگر کارایی روش با معیار F برابر 53.92% و با 11% افزایش نسبت به دیگر روش‌های استخراج کلمات کلیدی می­باشد.

Run

This project requires a data set as the context and target text (which is short text: between 500 and 1000 tokens).

In the code the name of the Context text is cntText and the name of target text is shortTxt. The main part of the program consists of two lines of code:

wake = Wake.wake(cntTxt , use_PreTrain_Model, word2vec_param, model_add) key = wake.keyword_EXT(shortTxt,numKey)

word2vec_param is a tuple contains parameters for traning Word2vec: (window_size, min_count) use_PreTrain_Model is a binary variable that indicates whether the pre-trained model is being used: if use_PreTrain_Model=1 -> using pretrain Model model_add is the address of pretrain model that can be empty

Example

In this project, text keywords are automatically extracted based on its context. For example for the following input text:

وزرای امور خارجه آمریکا و عربستان در پایان سفر مایک پامپئو به ریاض در کنفرانسی مطبوعاتی تاکید کردند که محور گفت وگوهایشان ایران و `` مقابله با سیاست های ایران در منطقه '' بوده است . به گزارش ایسنا ، به نقل از شبکه اسکای نیوز عربی ، مایک پامپئو ، وزیر خارجه جدید آمریکا در این کنفرانس مطبوعاتی گفت : ما شراکت ویژه ای با عربستان داریم که این شراکت و همکاری در حال گسترش است . دیدارهای بسیار خوبی با همتای عربستانی خود و نیز پادشاه و دیگر مسئولان این کشور داشتم . رئیس جمهور ترامپ بسیار خوشحال می شود میزبان پادشاه عربستان و مسئولان اقتصادی این کشور در کاخ سفید باشد . وزیر امور خارجه آمریکا ادامه داد : امنیت عربستان یک اولویت اصلی برای ایالات متحده است و ما با عربستان کار می کنیم تا امنیت در این کشور ارتقا یابد . پامپئو در بخش دیگری از سخنانش به مساله ایران پرداخت و مدعی شد : ایران باعث ایجاد ناامنی و بی ثباتی در منطقه و بزرگترین حامی تروریسم در جهان است . این کشور با شبه نظامیان وابسته به خود در سوریه ، عراق و یمن و نیز با حملات سایبری به ایجاد ناامنی دست می زند . باید بگویم برخلاف دولت قبلی ایالات متحده ما دست بسته نمی نشینیم . اطمینان می دهم ایران هیچگاه به سلاح اتمی دست نخواهد یافت . او ادامه داد : درباره توافق هسته ای با ایران نیز باید بگویم رفتار ایران بعد از این توافق بدتر شده است . همانگونه که رئیس جمهور ترامپ گفته است این توافق باید اصلاح شود و اگر اصلاح نشود و یا قابل اصلاح نباشد ما از آن خارج می شویم . پامپئو ادامه داد : باید جلوی اقدامات ایران از جمله کمک به حوثی ها گرفته شود . حوثی ها با پرتاب موشک و نیز به خطر انداختن امنیت دریانوردی ، عربستان و امنیت منطقه را تهدید می کنند . ما به عربستان در مقابله با این تهدیدات کمک خواهیم کرد . همزمان نیز مذاکرات با نماینده سازمان ملل در یمن را پی می گیریم تا اوضاع در یمن که باعث ظهور و رشد القاعده شده ، وخیم تر نشود . خطر علیه منطقه یقینا تهدید علیه ایالات متحده است . وزیر امور خارجه آمریکا به سفر ترامپ به عربستان نیز اشاره کرد و گفت : سفر ترامپ به منطقه یک سفر تاریخی بود که در آن یک سازمان مبارزه با تروریسم تشکیل شد . ما متعهد به پیگیری اقداماتمان در این راستا هستیم البته خاورمیانه و شرکایمان نباید منتظر آمریکا بمانند و اطمینان داریم که عربستان در مبارزه با تروریسم پیش قراول دیگر کشورها خواهد بود . مایک پامپئو در پایان سخنان خود با ستایش از اقدامات اصلاحی ولیعهد عربستان ، به چشم انداز 2030 این کشور اشاره کرد و گفت که ایالات متحده آمریکا حامی برنامه های محمد بن سلمان ، ولیعهد عربستان است و اصلاحات ایجاد شده در این کشور به ویژه در زمینه حقوق زنان را ستایش می کند . عادل الجبیر ، وزیر امور خارجه عربستان نیز به عنوان میزبان همتای آمریکایی خود در آغاز این کنفرانس مطبوعاتی گفت که با پامپئو توافق کرده تا مانع `` خواسته های روزافزون ایران در منطقه '' شود . وی گفت : دو کشور بر سر مبارزه با `` اقدامات بی ثبات کننده ایران '' در منطقه توافق دارند . ما از سیاست های آمریکا در قبال ایران به طور کامل حمایت می کنیم که از جمله آن سیاست های ایالات متحده در قبال برنامه هسته ای ایران است .

The 10 keywords extracted by the model are:

('ایران', 4.05292034373375)

('عربستان', 4.193905604785485)

('کشور', 4.7680901504699245)

('آمریکا', 4.941453550088568)

('منطقه', 4.949306749139798)

('ایالات', 5.365563238340798)

('متحده', 5.444792335101005)

('توافق', 5.479569006927752)

('خارجه', 5.616200457615028)

('ترامپ', 5.829934633246103)

Note

In this model, lower score means higher priority.

Reference:

Implemented article

Owner
Omid Hajipoor
Ph.D. Student, NLP Engineer
Omid Hajipoor
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"

Structural Guidance for Transformer Language Models This repository accompanies the paper, Structural Guidance for Transformer Language Models, publis

International Business Machines 10 Dec 14, 2022
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive

I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others

1 Jan 13, 2022
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoenc

Venelin Valkov 1.8k Dec 31, 2022
Script to generate VAD dataset used in Asteroid recipe

About the dataset LibriVAD is an open source dataset for voice activity detection in noisy environments. It is derived from LibriSpeech signals (clean

11 Sep 15, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 227 Jan 02, 2023
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Jan 03, 2023
Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

AI-BOT Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

Thempra 2 Dec 21, 2022
Almost State-of-the-art Text Generation library

Ps: we are adding transformer model soon Text Gen 🐐 Almost State-of-the-art Text Generation library Text gen is a python library that allow you build

Emeka boris ama 63 Jun 24, 2022
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
Blue Brain text mining toolbox for semantic search and structured information extraction

Blue Brain Search Source Code DOI Data & Models DOI Documentation Latest Release Python Versions License Build Status Static Typing Code Style Securit

The Blue Brain Project 29 Dec 01, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022