Repositório da disciplina no semestre 2021-2

Related tags

Text Data & NLP2021-2
Overview

Avisos!

  • Nenhum aviso!

Compiladores 1

Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, wiki e discussões. Este arquivo contêm informações básicas sobre a disciplina e o plano de ensino do semestre.

Informações básicas

Curso:
Engenharia de Software
Professor:
Fábio Macêdo Mendes
Disciplina:
Compiladores 1
Semestre/ano:
02/2020
Carga horária:
60 h
Créditos:
04

Ementa

  • Introdução
  • Autômatos
  • Organização e estrutura de compiladores e interpretadores.
  • Análise léxica.
  • Expressões Regulares
  • Análise sintática.
  • Gramáticas Regulares e Livres de Contexto
  • Estruturas de Dados e representação interna de código-fonte.
  • Análise semântica.
  • Geração de código.
  • Máquinas abstratas e ambientes de tempo de execução.
  • Projeto de Compiladores.
  • Compiladores, Interpretadores e Parsers na Engenharia de Software.

Horário das aulas e atendimento

Aulas teóricas e de exercícios: quartas e sextas-feiras às 14h Atendimento: realizado de forma assíncrona no grupo de Telegram da disciplina

Informações importantes

Este curso utiliza Telegram + GitHub + Microsoft Teams para gerenciar o curso. A comunicação com a turma é feita através do Telegram e os encontros presenciais no Microsoft Teams. Habilite a funcionalidade "Watch" no repositório para receber notificações sobre atualizações.

Github:
https://github.com/compiladores-fga/2021-2
Telegram:
(oculto, enviado por e-mail)
Teams:
(oculto, disponível no grupo de Telegram)

Critérios de avaliação

A avaliação será feita usando um critério de avaliação baseado em capacidades e competências complementada por um mecanismo de avaliação competitiva.

Avaliação por capacidades e competências

A avaliação é baseada no domínio de diversas competências e obtenção de medalhas relacionadas ao conteúdo do curso. A lista de competências está no arquivo COMPETENCIAS.md e a de medalhas em MEDALHAS.md

Cada competência é avaliada com uma nota numérica, onde a pontuação pode ser obtida por vários meios (provas, trabalhos, tutoriais, entre outros). O aluno precisa de uma nota numérica maior ou igual a 10 para ser considerado proficiente em cada uma destas competências.

As competências são itens considerados essenciais para a compreensão da disciplina e todos alunos precisam demonstrar proficiência em todas estas competências para serem aprovados.

Medalhas representam feitos que demonstram conhecimento mais aprofundado sobre os assuntos abordados no curso, além de habilitarem menções mais altas.

A menção final é calculada da seguinte maneira:

  • MI: Obteve pelo menos metade das competências básicas
  • MM: Obteve todas as competências básicas menos uma.
  • MS: Obteve todas as competências básicas e pelo menos 15 medalhas.
  • SS: Obteve todas as competências básicas e pelo menos 30 medalhas.

Código de ética e conduta

Algumas avaliações serão realizadas com auxílio do computador no laboratório de informática. Todas as submissões serão processadas por um programa de detecção de plágio. Qualquer atividade onde for detectada a presença de plágio será anulada sem a possibilidade de substituição. Não será feita qualquer distinção entre o aluno que forneceu a resposta para cópia e o aluno que obteve a mesma.

As mesmas considerações também se aplicam às provas teóricas e atividades entregues no papel.

Prepare-se

O curso utiliza alguns pacotes e ferramentas para os quais cada estudante deverá providenciar a instalação o mais cedo o possível. O curso requer Python 3.6+ com alguns pacotes instalados:

  • Pip: Gerenciador de pacotes do Python (sudo apt-get install python3-pip)
  • Jupyter notebook/nteract/Google colab: Ambiente de programação científica (https://nteract.io)
  • Lark (pip3 install lark-parser --user): Biblioteca de parsing para Python. (note a ausência do sudo no comando!)
  • Docker: cria ambientes completamente isolados para teste e validação (sudo apt-get install docker.io)

Já que vamos utilizar o Python, vale a pena instalar as seguintes ferramentas:

  • virtualenvwrapper: isola ambientes de desenvolvimento
  • flake8: busca erros de estilo e programação no seu código
  • black: formatador de código de acordo com o guia de estilo do Python
  • pytest, pytest-cov: criação de testes unitários
  • hypothesis: auxilia na criação de testes unitários parametrizados.
  • Editores de código/IDE: Utilize o seu favorito. Caso precise de uma recomendação, seguem algumas: * PyCharm Educacional - IDE com ótimos recursos de introspecção e refatoração e que adora memória RAM. Possui uma versão livre e uma versão profissional paga, mas que é gratuita para estudantes. * VSCode - um bom meio termo entre uma IDE e um editor de código leve. Criado para Javascript, mas possui bons plugins para Python e várias outras linguagens. * Vi/Vim - herança dos anos 70 que nunca morre ;) Instale os plugins para Python.

DICA: em todos os casos, prefira instalar os pacotes Python utilizando o apt-get ou o mecanismo que sua distribuição fornece e, somente se o pacote não existir, instale-o utilizando o pip. Se utilizar o pip, faça a instalação de usuário utilizando o comando pip3 install <pacote> --user (NUNCA utilize o sudo junto com --user e evite instalar globalmente para evitar problemas futuros com o APT). Melhor ainda: isole o ambiente utilizado em cada disciplina com uma ferramenta como o Virtualenv ou o Poetry.

Linux e Docker

Os comandos de instalação acima assumem uma distribuição de Linux baseada em Debian. Não é necessário instalar uma distribuição deste tipo e você pode adaptar os comandos para o gerenciador de pacotes da sua distribuição (ou o Brew, no caso do OS X). Apesar do Linux não ser necessário para executar a maior parte das tarefas, é altamente recomendável que todos instalem o Docker para compartilharmos ambientes de desenvolvimento previsíveis (por exemplo, eu testarei as submissões em containers específicos que serão compartilhados com a turma). É possível executar o Docker em ambientes não-Linux utilizando o Docker Machine ou o Vagrant. Deste modo, cada aluno deve providenciar a instalação do Docker e Docker Compose na sua máquina.

Bibliografia principal

Dragon Book: Compilers: Principles, Techniques, and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, Pearson, 2006. SICP: Structure and Interpretation of Computer Programs, Gerald Jay Sussman and Hal Abelson, MIT Press. (https://web.mit.edu/alexmv/6.037/sicp.pdf)

Material suplementar

Curso de Python: https://scrimba.com/learn/python Curso de Python no Youtube (pt-BR): https://www.youtube.com/watch?v=S9uPNppGsGo&list=PLvE-ZAFRgX8hnECDn1v9HNTI71veL3oW0

Cronograma de atividades

Consultar cronograma.

Obs.: O cronograma está sujeito a alterações.

A full spaCy pipeline and models for scientific/biomedical documents.

This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds

AI2 1.3k Jan 03, 2023
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
Source code for the paper "TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations"

TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly Representations Created by Jiahao Pang, Duanshun Li, and Dong Tian from InterDigital In

InterDigital 21 Dec 29, 2022
Textpipe: clean and extract metadata from text

textpipe: clean and extract metadata from text textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata

Textpipe 298 Nov 21, 2022
End-to-end MLOps pipeline of a BERT model for emotion classification.

image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this

Dimitre Oliveira 4 Nov 06, 2022
Türkçe küfürlü içerikleri bulan bir yapay zeka kütüphanesi / An ML library for profanity detection in Turkish sentences

"Kötü söz sahibine aittir." -Anonim Nedir? sinkaf uygunsuz yorumların bulunmasını sağlayan bir python kütüphanesidir. Farkı nedir? Diğer algoritmalard

KaraGoz 4 Feb 18, 2022
Python package for performing Entity and Text Matching using Deep Learning.

DeepMatcher DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and util

461 Dec 28, 2022
Python3 to Crystal Translation using Python AST Walker

py2cr.py A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.

66 Jul 25, 2022
Exploring dimension-reduced embeddings

sleepwalk Exploring dimension-reduced embeddings This is the code repository. See here for the Sleepwalk web page. License and disclaimer This program

S. Anders's research group at ZMBH 91 Nov 29, 2022
Codes for coreference-aware machine reading comprehension

Data and code for the paper "Tracing Origins: Coreference-aware Machine Reading Comprehension" at ACL2022. Dataset There are three folders for our thr

11 Sep 29, 2022
Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Sonnet finder Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet. Usage This is a Python scrip

Marcel Bollmann 11 Sep 25, 2022
Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Hans Alemão 4 Jul 20, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
Official PyTorch implementation of SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 29, 2022
中文空间语义理解评测

中文空间语义理解评测 最新消息 2021-04-10 🚩 排行榜发布: Leaderboard 2021-04-05 基线系统发布: SpaCE2021-Baseline 2021-04-05 开放数据提交: 提交结果 2021-04-01 开放报名: 我要报名 2021-04-01 数据集 pa

40 Jan 04, 2023
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Vikash Singh 5.3k Jan 01, 2023
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022