Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Overview

Sonnet finder

Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Usage

This is a Python script that should run without a GPU or any other special hardware requirements.

  1. Install the required packages, e.g. via: pip install -r requirements.txt

  2. Prepare a plain text file, say input.txt, with text you want to make a sonnet out of (sonnet-ize? sonnet-ify?). It can have multiple sentences on the same line, but a sentence should not be split across multiple lines.

    For example, I used pandoc --to=plain --wrap=none to generate a text file from my LaTeX papers. You could also start by grabbing some text files from Project Gutenberg.

  3. Run sonnet finder: python sonnet_finder.py input.txt -o output.tsv

    Using -o will save a list of all extracted candidate phrases, sorted by rhyme pattern, so you can generate new sonnets more quickly (see below) or browse and cherry-pick from the candidates to make your own sonnet out of these lines.

    Either way, the script will output a full example sonnet to STDOUT (provided enough rhyming pairs in iambic pentameter were found).

  4. If you've saved an output.tsv file before, you can quickly generate new sonnets via python sonnet_remix.py output.tsv. Since the stress and pronunciation prediction can be slow on larger files, this is much better than re-running sonnet_finder.py if you want more automatically generated suggestions.

Examples

This is a sonnet (with cherry-picked lines) made out of my PhD thesis:

the application of existing tools
describe a mapping to a modern form
applying similar replacement rules
the base ensembles slightly outperform

hungarian, icelandic, portuguese
perform a similar evaluation
contemporary lexemes or morphemes
a single dataset in isolation

historical and modern language stages
the weighted combination of encoder
the german dative ending -e in phrases
predictions fed into the next decoder

in this example from the innsbruck letter
machine translation still remains the better

These stanzas are compiled from a couple of automatically-generated suggestions based on the abstracts of all papers published in 2021 in the ACL Anthology:

effective algorithm that enables
improvements on a wide variety
and training with adjudicated labels
anxiety and test anxiety

obtain remarkable improvements on
decoder architecture, which equips
associated with the lexicon
surprising personal relationships

the impact of the anaphoric one
complexity prediction competition
developed for a laboratory run
existing parsers typically condition

examples, while in practice, most unseen
evaluate translation tasks between

Here's the same using Moby Dick:

among the marble senate of the dead
offensive matters consequent upon
a crawling reptile of the land, instead
fifteen, eighteen, and twenty hours on

the lakeman now patrolled the barricade
egyptian tablets, whose antiquity
the waters seemed a golden finger laid
maintains a permanent obliquity

the pequod with the little negro pippin
and with a frightful roll and vomit, he
increased, besides perhaps improving it in
transparent air into the summer sea

the traces of a simple honest heart
the fishery, and not the thousandth part

(The emjambment in the third stanza here is a lucky coincidence; the script currently doesn't do any kind of syntactic analysis or attempt coherence between lines.)

How it works

This script relies on the grapheme-to-phoneme library g2p_en by Park & Kim to convert the English input text to phoneme sequences (i.e., how the text would be pronounced). I chose this because it's a pip-installable Python library that fulfills two important criteria:

  1. it's not restricted to looking up pronunciations in a dictionary, but can handle arbitrary words through the use of a neural model (although, obviously, this will not always be accurate);

  2. it provides stress information for each vowel (i.e., whether any given vowel should be stressed or unstressed, which is important for determining the poetic meter).

The script then scans the g2p output for occurrences of iambic pentameter, i.e. a 0101010101(0) pattern, additionally checking if they coincide with word boundaries.

For finding snippets that rhyme, I rely mostly on Ghazvininejad et al. (2016), particularly §3 (relaxing the iambic pentameter a bit by allowing words that end in 100) and §5.2 (giving an operational definition of "slant rhyme" that I mostly try to follow).

QNA (Questions Nobody Asked)

  • Why does the script sometimes output lines that don't rhyme or don't fit the iambic meter? This script can only be as good as the grapheme-to-phoneme algorithm that's used. It frequently fails on words it doesn't know (for example, it tries to rhyme datasets with Portuguese?!) and also usually fails on abbreviations. Maybe there's a better g2p library that could be used, or the existing g2p_en could be modified to accept a custom dictionary, so you could manually define pronunciations for commonly used words.

  • Could this script also generate other types of poems? Sure. You could start by changing the regex iambic_pentameter to something else; maybe a sequence of dactyls? There are some further hardcoded assumptions in the code about iambic pentameter in the function get_stress_and_boundaries() that might have to be modified.

  • Could this script generate poems in languages other than English? This would require a suitable replacement for g2p_en that predicts pronunciations and stress patterns for the desired language, as well as re-writing the code that determines whether two phrases can rhyme; see the comments in the script for details. In particular, the code for English uses ARPABET notation for the pronunciation, which won't be suitable for other languages.

  • Can this script generate completely novel phrases in the style of an input text? This script does not "hallucinate" any text or generate anything that wasn't already there in the input; if you want to do that, take a look at Deep-speare maybe.

etc.

Written by Marcel Bollmann, inspired by a tweet, licensed under the MIT License.

I'm not the first one to write a script like this, but it was a fun exercise!

Owner
Marcel Bollmann
Computational linguist, postdoc, programming enthusiast.
Marcel Bollmann
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022
Stack based programming language that compiles to x86_64 assembly or can alternatively be interpreted in Python

lang lang is a simple stack based programming language written in Python. It can

Christoffer Aakre 1 May 30, 2022
Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

MITRE Cybersecurity 64 Nov 22, 2022
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
It analyze the sentiment of the user, whether it is postive or negative.

Sentiment-Analyzer-Tool It analyze the sentiment of the user, whether it is postive or negative. It uses streamlit library for creating this sentiment

Paras Patidar 18 Dec 17, 2022
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
A design of MIDI language for music generation task, specifically for Natural Language Processing (NLP) models.

MIDI Language Introduction Reference Paper: Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions: code This

Robert Bogan Kang 3 May 25, 2022
A library for Multilingual Unsupervised or Supervised word Embeddings

MUSE: Multilingual Unsupervised and Supervised Embeddings MUSE is a Python library for multilingual word embeddings, whose goal is to provide the comm

Facebook Research 3k Jan 06, 2023
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022
Nmt - TensorFlow Neural Machine Translation Tutorial

Neural Machine Translation (seq2seq) Tutorial Authors: Thang Luong, Eugene Brevdo, Rui Zhao (Google Research Blogpost, Github) This version of the tut

6.1k Dec 29, 2022
Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image

K. Seeliger 2 May 17, 2022
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
📔️ Generate a text-based journal from a template file.

JGen 📔️ Generate a text-based journal from a template file. Contents Getting Started Example Overview Usage Details Reserved Keywords Gotchas Getting

Harrison Broadbent 21 Sep 25, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

JHJu 2 Jan 18, 2022
Beyond Paragraphs: NLP for Long Sequences

Beyond Paragraphs: NLP for Long Sequences

AI2 338 Dec 02, 2022
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
A simple chatbot based on chatterbot that you can use for anything has basic features

Chatbotium A simple chatbot based on chatterbot that you can use for anything has basic features. I have some errors Read the paragraph below: Known b

Herman 1 Feb 16, 2022