Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Overview

Sonnet finder

Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Usage

This is a Python script that should run without a GPU or any other special hardware requirements.

  1. Install the required packages, e.g. via: pip install -r requirements.txt

  2. Prepare a plain text file, say input.txt, with text you want to make a sonnet out of (sonnet-ize? sonnet-ify?). It can have multiple sentences on the same line, but a sentence should not be split across multiple lines.

    For example, I used pandoc --to=plain --wrap=none to generate a text file from my LaTeX papers. You could also start by grabbing some text files from Project Gutenberg.

  3. Run sonnet finder: python sonnet_finder.py input.txt -o output.tsv

    Using -o will save a list of all extracted candidate phrases, sorted by rhyme pattern, so you can generate new sonnets more quickly (see below) or browse and cherry-pick from the candidates to make your own sonnet out of these lines.

    Either way, the script will output a full example sonnet to STDOUT (provided enough rhyming pairs in iambic pentameter were found).

  4. If you've saved an output.tsv file before, you can quickly generate new sonnets via python sonnet_remix.py output.tsv. Since the stress and pronunciation prediction can be slow on larger files, this is much better than re-running sonnet_finder.py if you want more automatically generated suggestions.

Examples

This is a sonnet (with cherry-picked lines) made out of my PhD thesis:

the application of existing tools
describe a mapping to a modern form
applying similar replacement rules
the base ensembles slightly outperform

hungarian, icelandic, portuguese
perform a similar evaluation
contemporary lexemes or morphemes
a single dataset in isolation

historical and modern language stages
the weighted combination of encoder
the german dative ending -e in phrases
predictions fed into the next decoder

in this example from the innsbruck letter
machine translation still remains the better

These stanzas are compiled from a couple of automatically-generated suggestions based on the abstracts of all papers published in 2021 in the ACL Anthology:

effective algorithm that enables
improvements on a wide variety
and training with adjudicated labels
anxiety and test anxiety

obtain remarkable improvements on
decoder architecture, which equips
associated with the lexicon
surprising personal relationships

the impact of the anaphoric one
complexity prediction competition
developed for a laboratory run
existing parsers typically condition

examples, while in practice, most unseen
evaluate translation tasks between

Here's the same using Moby Dick:

among the marble senate of the dead
offensive matters consequent upon
a crawling reptile of the land, instead
fifteen, eighteen, and twenty hours on

the lakeman now patrolled the barricade
egyptian tablets, whose antiquity
the waters seemed a golden finger laid
maintains a permanent obliquity

the pequod with the little negro pippin
and with a frightful roll and vomit, he
increased, besides perhaps improving it in
transparent air into the summer sea

the traces of a simple honest heart
the fishery, and not the thousandth part

(The emjambment in the third stanza here is a lucky coincidence; the script currently doesn't do any kind of syntactic analysis or attempt coherence between lines.)

How it works

This script relies on the grapheme-to-phoneme library g2p_en by Park & Kim to convert the English input text to phoneme sequences (i.e., how the text would be pronounced). I chose this because it's a pip-installable Python library that fulfills two important criteria:

  1. it's not restricted to looking up pronunciations in a dictionary, but can handle arbitrary words through the use of a neural model (although, obviously, this will not always be accurate);

  2. it provides stress information for each vowel (i.e., whether any given vowel should be stressed or unstressed, which is important for determining the poetic meter).

The script then scans the g2p output for occurrences of iambic pentameter, i.e. a 0101010101(0) pattern, additionally checking if they coincide with word boundaries.

For finding snippets that rhyme, I rely mostly on Ghazvininejad et al. (2016), particularly §3 (relaxing the iambic pentameter a bit by allowing words that end in 100) and §5.2 (giving an operational definition of "slant rhyme" that I mostly try to follow).

QNA (Questions Nobody Asked)

  • Why does the script sometimes output lines that don't rhyme or don't fit the iambic meter? This script can only be as good as the grapheme-to-phoneme algorithm that's used. It frequently fails on words it doesn't know (for example, it tries to rhyme datasets with Portuguese?!) and also usually fails on abbreviations. Maybe there's a better g2p library that could be used, or the existing g2p_en could be modified to accept a custom dictionary, so you could manually define pronunciations for commonly used words.

  • Could this script also generate other types of poems? Sure. You could start by changing the regex iambic_pentameter to something else; maybe a sequence of dactyls? There are some further hardcoded assumptions in the code about iambic pentameter in the function get_stress_and_boundaries() that might have to be modified.

  • Could this script generate poems in languages other than English? This would require a suitable replacement for g2p_en that predicts pronunciations and stress patterns for the desired language, as well as re-writing the code that determines whether two phrases can rhyme; see the comments in the script for details. In particular, the code for English uses ARPABET notation for the pronunciation, which won't be suitable for other languages.

  • Can this script generate completely novel phrases in the style of an input text? This script does not "hallucinate" any text or generate anything that wasn't already there in the input; if you want to do that, take a look at Deep-speare maybe.

etc.

Written by Marcel Bollmann, inspired by a tweet, licensed under the MIT License.

I'm not the first one to write a script like this, but it was a fun exercise!

Owner
Marcel Bollmann
Computational linguist, postdoc, programming enthusiast.
Marcel Bollmann
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Zheyuan (David) Liu 29 Nov 17, 2022
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi

Nikolas Petrou 1 Jan 12, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022
OpenAI CLIP text encoders for multiple languages!

Multilingual-CLIP OpenAI CLIP text encoders for any language Colab Notebook · Pre-trained Models · Report Bug Overview OpenAI recently released the pa

Fredrik Carlsson 481 Dec 30, 2022
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
Code examples for my Write Better Python Code series on YouTube.

Write Better Python Code This repository contains the code examples used in my Write Better Python Code series published on YouTube: https:/

858 Dec 29, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
Full Spectrum Bioinformatics - a free online text designed to introduce key topics in Bioinformatics using the Python

Full Spectrum Bioinformatics is a free online text designed to introduce key topics in Bioinformatics using the Python programming language. The text is written in interactive Jupyter Notebooks, whic

Jesse Zaneveld 33 Dec 28, 2022
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

BP-Transformer This repo contains the code for our paper BP-Transformer: Modeling Long-Range Context via Binary Partition Zihao Ye, Qipeng Guo, Quan G

Zihao Ye 119 Nov 14, 2022
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

2 Jul 05, 2022