Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

Overview

auto_code_complete v1.3

purpose and usage

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is a combined model of a deep-learning NLP(Natural Language Process) model structure called 'GRU(gated recurrent unit)' and 'LSTM(Long Short Term Memory)'.

the model for this program is one of the deep-learning NLP(Natural Language Process) model structure called 'GRU(gated recurrent unit)'.

how to use (terminal)

  • first, download the repository on your local environment.
  • install the neccessary libraries on your dependent environment.

pip install -r requirements.txt

  • change your working directory to auto-complete/ and execute the line below

python -m auto_complete_model

  • it will require for you to enter the data you want to train with the model
ENTER THE CODE YOU WANT TO TRAIN IN YOUR MODEL : tensorflow tf.keras tf.keras.layers LSTM
==== TRAINING START ====
2022-01-08 18:24:14.308919: W tensorflow/core/platform/profile_utils/cpu_utils.cc:128] Failed to get CPU frequency: 0 Hz
Epoch 1/100
3/3 [==============================] - 1s 59ms/step - loss: 4.7865 - acc: 0.0532
Epoch 2/100
3/3 [==============================] - 0s 62ms/step - loss: 3.9297 - acc: 0.2872
Epoch 3/100
3/3 [==============================] - 0s 58ms/step - loss: 2.9941 - acc: 0.5532
...
Epoch 31/100
3/3 [==============================] - 0s 75ms/step - loss: 0.2747 - acc: 0.8617
Epoch 32/100
3/3 [==============================] - 0s 65ms/step - loss: 0.2700 - acc: 0.8298
==== TRAINING DONE ====
Now, Load the best weights on your model.
  • if you input your dataset successfully, it will ask for any uncompleted word to be entered.
ENTER THE UNCOMPLETED CODE YOU WANT TO COMPLETE : t tf te l la li k ke tf.kera tf.keras.l
t  - best recommendation : tensorflow
		 - all recommendations :  ['tensorflow']
tf  - best recommendation : tf.keras
		 - all recommendations :  ['tfkeras', 'tf.keras']
te  - best recommendation : tensorflow
		 - all recommendations :  ['tensorflow']
l  - best recommendation : list
		 - all recommendations :  ['list', 'layers']
la  - best recommendation : lange
		 - all recommendations :  ['layers', 'lange']
li  - best recommendation : list
		 - all recommendations :  ['list']
k  - best recommendation : keras
		 - all recommendations :  ['keras']
ke  - best recommendation : keras
		 - all recommendations :  ['keras']
tf.kera  - best recommendation : tf.keras
		 - all recommendations :  []
tf.keras.l  - best recommendation : tf.keras.layers
		 - all recommendations :  ['tf.keras.layers']
  • it will return the best matched word to complete and other recommendations
Do you want to check only the recommendations? (y/n) : y
['tensorflow'], 
['tfkeras', 'tf.keras'], 
['tensorflow'], 
['list', 'layers'], 
['layers', 'lange'], 
['list'], 
['keras'], 
['keras'], 
[], 
['tf.keras.layers']

version update & issues

v1.2 update

2022.01.08

  • change deep-learning model from GRU to GRU+LSTM to improve the performance

By adding the same structrue of new LSTM layers to concatenate before the output layer to an existing model, it shows faster learning and better accuracies in predicting matched recommendations for given incomplete words.

v1.3.1 update

2022.01.09

  • fix the glitches in data preprocessing

We solved the problem that it wouldn't add a new dataset on an existing dataset.

  • add plot_history function in a model class

v1.3.2 update

2022.01.09

  • add model_save,model_load mode in order that users can save and load their model while training a customized model
# Load text data
tf_filepath = "../data/text_data/tf_all_symbols.txt"
with open(tf_filepath, 'r') as f:
    tf_code_text = f.read()

# split the data into 10 parts
total_length = len(tf_code_text)
tf_code_ls = []
for i in range(10):
    globals()[f'tf_code_text_{i}'] = tf_code_text[int(total_length*0.1)*i:int(total_length*0.1)]
    tf_code_ls.append(globals()[f'tf_code_text_{i}'])

# train each dataset with a model setting up arguments 'model_save=True, model_name='mymodel', model_load=True' 
for tf_code in tf_code_ls:
    my_model = auto_coding(new_code=tf_code,
                          # verbose=0,
                           batch_size=100,
                           epochs=200,
                           patience=12,
                           model_summary=True,
                           model_save=True,
                           model_name='tf_model', # 'tf_model/tf_model.h5'
                           model_load=True
                          )
A simple word search made in python

Word Search Puzzle A simple word search made in python Usage $ python3 main.py -h usage: main.py [-h] [-c] [-f FILE] Generates a word s

Magoninho 16 Mar 10, 2022
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
Synthetic data for the people.

zpy: Synthetic data in Blender. Website • Install • Docs • Examples • CLI • Contribute • Licence Abstract Collecting, labeling, and cleaning data for

Zumo Labs 253 Dec 21, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognit

SpeechBrain 5.1k Jan 09, 2023
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
State-of-the-art NLP through transformer models in a modular design and consistent APIs.

Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h

Open Business Software Solutions 42 Sep 21, 2022
Train BPE with fastBPE, and load to Huggingface Tokenizer.

BPEer Train BPE with fastBPE, and load to Huggingface Tokenizer. Description The BPETrainer of Huggingface consumes a lot of memory when I am training

Lizhuo 1 Dec 23, 2021
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
Deep Learning for Natural Language Processing - Lectures 2021

This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).

0 Feb 21, 2022
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
A highly sophisticated sequence-to-sequence model for code generation

CoderX A proof-of-concept AI system by Graham Neubig (June 30, 2021). About CoderX CoderX is a retrieval-based code generation AI system reminiscent o

Graham Neubig 39 Aug 03, 2021