Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

Overview

CIRPLANT

This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

For details please see our ICCV 2021 paper - Image Retrieval on Real-life Images with Pre-trained Vision-and-Language Models.

Demo image from CIRR data

If you find this repository useful, we would appreciate it if you could give us a star.

You are currently viewing the code & model repository. For more information, see our Project homepage.

Introduction

CIRPLANT is a transformer based model that leverages rich pre-trained vision-and-language (V&L) knowledge for modifying visual features conditioned on natural language. To the best of our knowledge, this is the first attempt in repurposing a V&L pre-trained (VLP) model for composed image retrieval- a task that requires language-conditioned image feature modification.

Our intention is to extend current methods to the open-domain. Together with the release of the CIRR dataset, we hope this work can inspire further research on composed image retrieval

Installation & Dataset Preparation

Check INSTALL.md for installation instructions.

Training

To train the model and reproduce our published results on CIRR:

python trainval_oscar.py --dataset cirr --usefeat nlvr-resnet152_w_empty --max_epochs 300 --model CIRPLANT-img --model_type 'bert' --model_name_or_path data/Oscar_pretrained_models/base-vg-labels/ep_107_1192087 --task_name cirr --gpus 1 --img_feature_dim 2054 --max_img_seq_length 1 --model_type bert --do_lower_case --max_seq_length 40 --learning_rate 1e-05 --loss_type xe --seed 88 --drop_out 0.3 --weight_decay 0.05 --warmup_steps 0 --loss st --batch_size 32 --num_batches 529 --pin_memory --num_workers_per_gpu 0 --comment input_your_comments --output saved_models/cirr_rc2_iccv_release_test --log_by recall_inset_top1_correct_composition

To use pre-trained weights to reproduce results in our ICCV 2021 paper, please see DOWNLOAD.md.

Developing

To develop based on our code, we highly recommend first getting familar with Pytorch Lightning.

You can train models as we have described above, the results will be saved to a folder of your choosing.

To inspect results, we recommend using Tensorboard and load the saved events.out.tfevents file. Alternatively, you can also find all information dumped to a text file log.txt.

Pytorch Lightning automatically saves the latest checkpoint last.ckpt in the same output directory. Additionally, you can also specify a certain validation score name --log_by [...] to monitor, which enables saving of the best checkpoint.

Test-split Evaluation

We do not publish the ground truth for the test split of CIRR. Instead, we host an evaluation server, should you prefer to publish results on the test-split.

To generate .json files and upload to the test server, load a trained checkpoint and enable --testonly.

As an example, compare the following arguments with the training arguments above.

python trainval_oscar.py --dataset cirr --usefeat nlvr-resnet152_w_empty --max_epochs 300 --model CIRPLANT-img --model_type 'bert' --model_name_or_path data/Oscar_pretrained_models/base-vg-labels/ep_107_1192087 --task_name cirr --gpus 1 --img_feature_dim 2054 --max_img_seq_length 1 --model_type bert --do_lower_case --max_seq_length 40 --learning_rate 1e-05 --loss_type xe --seed 88 --drop_out 0.3 --weight_decay 0.05 --warmup_steps 0 --loss st --batch_size 32 --num_batches 529 --pin_memory --num_workers_per_gpu 0 --comment input_your_comments --output saved_models/cirr_rc2_iccv_release_test --log_by recall_inset_top1_correct_composition --check_val_every_n_epoch 1 --testonly --load_from_checkpoint $CKPT_PATH

Two .json files will be saved to the output directory, one for Recall validation, the other for Recall_Subset. Visit our test server and upload it to get results.

Citation

Please consider citing this paper if you use the code:

@article{liu2021cirr,
      title={Image Retrieval on Real-life Images with Pre-trained Vision-and-Language Models}, 
      author={Zheyuan Liu and Cristian Rodriguez-Opazo and Damien Teney and Stephen Gould},
      journal={arXiv preprint arXiv:2108.04024},
      year={2021},
}
Owner
Zheyuan (David) Liu
長い夢見る心はそう 永遠で
Zheyuan (David) Liu
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

2k Jan 04, 2023
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Yeoun Yi 3 May 23, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
Index different CKAN entities in Solr, not just datasets

ckanext-sitesearch Index different CKAN entities in Solr, not just datasets Requirements This extension requires CKAN 2.9 or higher and Python 3 Featu

Open Knowledge Foundation 3 Dec 02, 2022
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
VMD Audio/Text control with natural language

This repository is a proof of principle for performing Molecular Dynamics analysis, in this case with the program VMD, via natural language commands.

Andrew White 13 Jun 09, 2022
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data.

MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data. It is implemented using Python.

willow 6 Jun 27, 2022
A 30000+ Chinese MRC dataset - Delta Reading Comprehension Dataset

Delta Reading Comprehension Dataset 台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 本資料集期望成為適用於遷移學習之標準中文閱讀理解資料集。 本資料集從2,108篇

272 Dec 15, 2022
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
ConferencingSpeech2022; Non-intrusive Objective Speech Quality Assessment (NISQA) Challenge

ConferencingSpeech 2022 challenge This repository contains the datasets list and scripts required for the ConferencingSpeech 2022 challenge. For more

21 Dec 02, 2022