Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Overview

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

  • Finetuning large language models like GPT2-xl is often difficult, as these models are too big to fit on a single GPU.
  • This guide explains how to finetune GPT2-xl and GPT-NEO (2.7B Parameters) with just one command of the Huggingface Transformers library on a single GPU.
  • This is made possible by using the DeepSpeed library and gradient checkpointing to lower the required GPU memory usage of the model.
  • I also explain how to set up a server on Google Cloud with a V100 GPU (16GB VRAM), that you can use if you don't have a GPU.

1. (Optional) Setup VM with V100 in Google Compute Engine

Note: The GPT2-xl model does run on any server with a GPU with at least 16 GB VRAM and 60 GB RAM. The GPT-NEO model needs at least 70 GB RAM. If you use your own server and not the setup described here, you will need to install CUDA and Pytorch on it.

Requirements

  1. Install the Google Cloud SDK: Click Here
  2. Register a Google Cloud Account, create a project and set up billing (only once you set up billing, you can use the $300 dollar sign up credit for GPUs).
  3. Request a quota limit increase for "GPU All Regions" to 1. Here is a step by step guide. The UI changed a bit and looks now like this.
  4. Log in and initialize the cloud sdk with gcloud auth login and gcloud init and follow the steps until you are set up.

Create VM

  • Replace YOURPROJECTID in the command below with the project id from your GCE project.
  • You can add the --preemptible flag to the command below, this reduces your cost to about 1/3, but Google is then able to shut down your instance at any point. At the time of writing, this configuration only costs about $1.28 / hour in GCE, when using preemptible.
  • You can change the zone, if there are no ressources available. Here is a list of all zones and whether they have V100 GPUs. Depending on the time of the day you might need to try out a few.
  • We need a GPU server with at least 60 GB RAM, otherwise the run will crash, whenever the script wants to save/pickle a model. This setup below gives us as much RAM as possible with 12 CPU cores in GCE (without paying for extended memory). You also can't use more than 12 CPU cores with a single V100 GPU in GCE.

Run this to create the instance:

gcloud compute instances create gpuserver \
   --project YOURPROJECTID \
   --zone us-west1-b \
   --custom-cpu 12 \
   --custom-memory 78 \
   --maintenance-policy TERMINATE \
   --image-family pytorch-1-7-cu110 \
   --image-project deeplearning-platform-release \
   --boot-disk-size 200GB \
   --metadata "install-nvidia-driver=True" \
   --accelerator="type=nvidia-tesla-v100,count=1" \

After 5 minutes or so (the server needs to install nvidia drivers first), you can connect to your instance with the command below. If you changed the zone, you also will need to change it here.

  • replace YOURSDKACCOUNT with your sdk account name
gcloud compute ssh [email protected] --zone=us-west1-b

Don't forget to shut down the server once your done, otherwise you will keep getting billed for it. This can be done here.

The next time you can restart the server from the same web ui here.

2. Download script and install libraries

Run this to download the script and to install all libraries:

git clone https://github.com/Xirider/finetune-gpt2xl.git
chmod -R 777 finetune-gpt2xl/
cd finetune-gpt2xl
pip install -r requirements.txt 
  • This installs transformers from source, as the current release doesn't work well with deepspeed.

(Optional) If you want to use Wandb.ai for experiment tracking, you have to login:

wandb login

3. Finetune GPT2-xl (1.5 Billion Parameters)

Then add your training data:

  • replace the example train.txt and validation.txt files in the folder with your own training data with the same names and then run python text2csv.py. This converts your .txt files into one column csv files with a "text" header and puts all the text into a single line. We need to use .csv files instead of .txt files, because Huggingface's dataloader removes line breaks when loading text from a .txt file, which does not happen with the .csv files.
  • If you want to feed the model separate examples instead of one continuous block of text, you need to pack each of your examples into an separate line in the csv train and validation files.
  • Be careful with the encoding of your text. If you don't clean your text files or if just copy text from the web into a text editor, the dataloader from the datasets library might not load them.

Run this:

deepspeed --num_gpus=1 run_clm.py \
--deepspeed ds_config.json \
--model_name_or_path gpt2-xl \
--train_file train.csv \
--validation_file validation.csv \
--do_train \
--do_eval \
--fp16 \
--overwrite_cache \
--evaluation_strategy="steps" \
--output_dir finetuned \
--eval_steps 200 \
--num_train_epochs 1 \
--gradient_accumulation_steps 2 \
--per_device_train_batch_size 8
  • This command runs the the standard run_clm.py file from Huggingface's examples with deepspeed, just with 2 lines added to enable gradient checkpointing to use less memory.
  • Training on the Shakespeare example should take about 17 minutes. With gradient accumulation 2 and batch size 8, one gradient step takes about 9 seconds. This means the model training speed should be almost 2 examples / second. You can go up to batch size of 12 before running out of memory, but that doesn't provide any speedups.
  • Note that the default huggingface optimizer hyperparameters and the hyperparameters given as flag overwrite the hyperparameters in the ds_config.json file. Therefore if you want to adjust learning rates, warmup and more, you need to set these as flags to the training command. For an example you can find further below the training command of GPT-NEO which changes the learning rate.
  • You might want to try different hyperparameters like --learning_rate and --warmup_steps to improve the finetuning.

4. Generate text with your finetuned model

You can test your finetuned GPT2-xl model with this script from Huggingface Transfomers (is included in the folder):

python run_generation.py --model_type=gpt2 --model_name_or_path=finetuned --length 200

Or you can use it now in your own code like this to generate text in batches:

# credit to Niels Rogge - https://github.com/huggingface/transformers/issues/10704

from transformers import GPT2Tokenizer, GPT2LMHeadModel
import torch

device = 'cuda' if torch.cuda.is_available() else 'cpu'

tokenizer = GPT2Tokenizer.from_pretrained('finetuned')
tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token
model = GPT2LMHeadModel.from_pretrained('finetuned').to(device)
print("model loaded")

# this is a single input batch with size 3
texts = ["From off a hill whose concave womb", "Another try", "A third test"]

encoding = tokenizer(texts, padding=True, return_tensors='pt').to(device)
with torch.no_grad():
    generated_ids = model.generate(**encoding, max_length=100)
generated_texts = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True)

print(generated_texts)
  • model inference runs on even small gpus or on cpus without any more additional changes

Finetune GPT-NEO (2.7 Billion Parameters)

This works now. I tested it with a server with one V100 GPU (16 GB VRAM) and 78 GB normal RAM, but it might not actually need that much RAM.

Add your training data like you would for GPT2-xl:

  • replace the example train.txt and validation.txt files in the folder with your own training data with the same names and then run python text2csv.py. This converts your .txt files into one column csv files with a "text" header and puts all the text into a single line. We need to use .csv files instead of .txt files, because Huggingface's dataloader removes line breaks when loading text from a .txt file, which does not happen with the .csv files.

  • If you want to feed the model separate examples instead of one continuous block of text, you need to pack each of your examples into an separate line in the csv train and validation files.

  • Be careful with the encoding of your text. If you don't clean your text files or if just copy text from the web into a text editor, the dataloader from the datasets library might not load them.

  • Be sure to either login into wandb.ai with wandb login or uninstall it completely. Otherwise it might cause a memory error during the run.

Then start the training run this command:

deepspeed --num_gpus=1 run_clm.py \
--deepspeed ds_config_gptneo.json \
--model_name_or_path EleutherAI/gpt-neo-2.7B \
--train_file train.csv \
--validation_file validation.csv \
--do_train \
--do_eval \
--fp16 \
--overwrite_cache \
--evaluation_strategy="steps" \
--output_dir finetuned \
--num_train_epochs 1 \
--eval_steps 15 \
--gradient_accumulation_steps 2 \
--per_device_train_batch_size 4 \
--use_fast_tokenizer False \
--learning_rate 5e-06 \
--warmup_steps 10
  • This uses a smaller "allgather_bucket_size" setting in the ds_config_gptneo.json file and a smaller batch size to further reduce gpu memory.
  • You might want to change and try hyperparameters to be closer to the orignal EleutherAi training config. You can find these here.

Generate text with a GPT-NEO 2.7 Billion Parameters model

I provided a script, that allows you to interactively prompt your GPT-NEO model. If you just want to sample from the pretrained model without finetuning it yourself, replace "finetuned" with "EleutherAI/gpt-neo-2.7B". Start it with this:

python run_generate_neo.py finetuned

Or use this snippet to generate text from your finetuned model within your code:

# credit to Suraj Patil - https://github.com/huggingface/transformers/pull/10848 - modified

from transformers import GPTNeoForCausalLM, AutoTokenizer

model = GPTNeoForCausalLM.from_pretrained("finetuned").to("cuda")
tokenizer = AutoTokenizer.from_pretrained("finetuned")

text = "From off a hill whose concave"
ids = tokenizer(text, return_tensors="pt").input_ids.to("cuda")

max_length = 400 + ids.shape[1] # add the length of the prompt tokens to match with the mesh-tf generation

gen_tokens = model.generate(
  ids,
  do_sample=True,
  min_length=max_length,
  max_length=max_length,
  temperature=0.9,
  use_cache=True
)
gen_text = tokenizer.batch_decode(gen_tokens)[0]
print(gen_text)

(Optional) Configuration

You can change the learning rate, weight decay and warmup by setting them as flags to the training command. Warm up and learning rates in the config are ignored, as the script always uses the Huggingface optimizer/trainer default values. If you want to overwrite them you need to use flags. You can check all the explanations here:

https://huggingface.co/transformers/master/main_classes/trainer.html#deepspeed

The rest of the training arguments can be provided as a flags and are all listed here:

https://huggingface.co/transformers/master/main_classes/trainer.html#trainingarguments

An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
2021海华AI挑战赛·中文阅读理解·技术组·第三名

文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。

21 Dec 26, 2022
Exploration of BERT-based models on twitter sentiment classifications

twitter-sentiment-analysis Explore the relationship between twitter sentiment of Tesla and its stock price/return. Explore the effect of different BER

Sammy Cui 2 Oct 02, 2022
The source code of "Language Models are Few-shot Multilingual Learners" (MRL @ EMNLP 2021)

Language Models are Few-shot Multilingual Learners Paper This is the source code of the paper [Arxiv] [ACL Anthology]: This code has been written usin

Genta Indra Winata 45 Nov 21, 2022
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 03, 2023
NLP applications using deep learning.

NLP-Natural-Language-Processing NLP applications using deep learning like text generation etc. 1- Poetry Generation: Using a collection of Irish Poem

KASHISH 1 Jan 27, 2022
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
Implementation of TTS with combination of Tacotron2 and HiFi-GAN

Tacotron2-HiFiGAN-master Implementation of TTS with combination of Tacotron2 and HiFi-GAN for Mandarin TTS. Inference In order to inference, we need t

SunLu Z 7 Nov 11, 2022
Collection of useful (to me) python scripts for interacting with napari

Napari scripts A collection of napari related tools in various state of disrepair/functionality. Browse_LIF_widget.py This module can be imported, for

5 Aug 15, 2022
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
This is the offline-training-pipeline for our project.

offline-training-pipeline This is the offline-training-pipeline for our project. We adopt the offline training and online prediction Machine Learning

0 Apr 22, 2022
T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets

T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets (product titles, images, comments, etc.).

55 Nov 22, 2022
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Code for the paper PermuteFormer

PermuteFormer This repo includes codes for the paper PermuteFormer: Efficient Relative Position Encoding for Long Sequences. Directory long_range_aren

Peng Chen 42 Mar 16, 2022
基于GRU网络的句子判断程序/A program based on GRU network for judging sentences

SentencesJudger SentencesJudger 是一个基于GRU神经网络的句子判断程序,基本的功能是判断文章中的某一句话是否为一个优美的句子。 English 如何使用SentencesJudger 确认Python运行环境 安装pyTorch与LTP python3 -m pip

8 Mar 24, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022