Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

Overview

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation

This is the official PyTorch implementation for the following EMNLP 2021 paper from Salesforce Research:

Title: CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation

Authors: Yue Wang, Weishi Wang , Shafiq Joty, and Steven C.H. Hoi

CodeT5 demo

Updates

Oct 29, 2021

We release fine-tuned checkpoints for all the downstream tasks covered in the paper.

Oct 25, 2021

We release a CodeT5-base fine-tuned checkpoint (Salesforce/codet5-base-multi-sum) for multilingual code summarzation. Below is how to use this model:

from transformers import RobertaTokenizer, T5ForConditionalGeneration

if __name__ == '__main__':
    tokenizer = RobertaTokenizer.from_pretrained('Salesforce/codet5-base')
    model = T5ForConditionalGeneration.from_pretrained('Salesforce/codet5-base-multi-sum')

    text = """def svg_to_image(string, size=None):
    if isinstance(string, unicode):
        string = string.encode('utf-8')
        renderer = QtSvg.QSvgRenderer(QtCore.QByteArray(string))
    if not renderer.isValid():
        raise ValueError('Invalid SVG data.')
    if size is None:
        size = renderer.defaultSize()
        image = QtGui.QImage(size, QtGui.QImage.Format_ARGB32)
        painter = QtGui.QPainter(image)
        renderer.render(painter)
    return image"""

    input_ids = tokenizer(text, return_tensors="pt").input_ids

    generated_ids = model.generate(input_ids, max_length=20)
    print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
    # this prints: "Convert a SVG string to a QImage."

Oct 18, 2021

We add a model card for CodeT5! Please reach out if you have any questions about it.

Sep 24, 2021

CodeT5 is now in hugginface!

You can simply load the model (CodeT5-small and CodeT5-base) and do the inference:

from transformers import RobertaTokenizer, T5ForConditionalGeneration

tokenizer = RobertaTokenizer.from_pretrained('Salesforce/codet5-base')
model = T5ForConditionalGeneration.from_pretrained('Salesforce/codet5-base')

text = "def greet(user): print(f'hello <extra_id_0>!')"
input_ids = tokenizer(text, return_tensors="pt").input_ids

# simply generate one code span
generated_ids = model.generate(input_ids, max_length=8)
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
# this prints "{user.username}"

Introduction

This repo provides the code for reproducing the experiments in CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation . CodeT5 is a new pre-trained encoder-decoder model for programming languages, which is pre-trained on 8.35M functions in 8 programming languages (Python, Java, JavaScript, PHP, Ruby, Go, C, and C#). In total, it achieves state-of-the-art results on 14 sub-tasks in a code intelligence benchmark - CodeXGLUE.

Paper link: https://arxiv.org/abs/2109.00859

Blog link: https://blog.einstein.ai/codet5/

The code currently includes two pre-trained checkpoints (CodeT5-small and CodeT5-base) and scripts to fine-tine them on 4 generation tasks ( code summarization, code generation, translation, and refinement) plus 2 understanding tasks (code defect detection and clone detection) in CodeXGLUE. We also provide their fine-tuned checkpoints to facilitate the easy replication of our paper.

In practice, CodeT5 can be deployed as an AI-powered coding assistant to boost the productivity of software developers. At Salesforce, we build an AI coding assistant demo using CodeT5 as a VS Code plugin to provide three capabilities for Apex developers:

  • Text-to-code generation: generate code based on the natural language description.
  • Code autocompletion: complete the whole function of code given the target function name.
  • Code summarization: generate the summary of a function in natural language description.

Table of Contents

  1. Citation
  2. License
  3. Dependency
  4. Download
  5. Fine-tuning
  6. Get Involved

Citation

If you find this code to be useful for your research, please consider citing.

@inproceedings{
    wang2021codet5,
    title={CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation}, 
    author={Yue Wang, Weishi Wang, Shafiq Joty, Steven C.H. Hoi},
    booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021},
    year={2021},
}

License

The code is released under the BSD-3 License (see LICENSE.txt for details), but we also ask that users respect the following:

This software should not be used to promote or profit from:

violence, hate, and division,

environmental destruction,

abuse of human rights, or

the destruction of people's physical and mental health.

We encourage users of this software to tell us about the applications in which they are putting it to use by emailing [email protected], and to use appropriate documentation when developing high-stakes applications of this model.

Dependency

  • Pytorch 1.7.1
  • tensorboard 2.4.1
  • transformers 4.6.1
  • tree-sitter 0.2.2

Download

Instructions to download:

# pip install gsutil
cd your-cloned-codet5-path

gsutil -m cp -r "gs://sfr-codet5-data-research/pretrained_models" .
gsutil -m cp -r "gs://sfr-codet5-data-research/data" .
gsutil -m cp -r "gs://sfr-codet5-data-research/finetuned_models" .

Fine-tuning

Go to sh folder, set the WORKDIR in exp_with_args.sh to be your cloned CodeT5 repository path.

You can use run_exp.py to run a broad set of experiments by simply passing the model_tag, task, and sub_task arguments. In total, we support five models (i.e., ['roberta', 'codebert', 'bart_base', 'codet5_small', 'codet5_base']) and six tasks (i.e., ['summarize', 'concode', 'translate', 'refine', 'defect', 'clone']). For each task, we use the sub_task to specify which specific datasets to fine-tine on. Below is the full list:

--task --sub_task Description
summarize ruby/javascript/go/python/java/php code summarization task on CodeSearchNet data with six PLs
concode none text-to-code generation on Concode data
translate java-cs/cs-java code-to-code translation between Java and C#
refine small/medium code refinement on code repair data with small/medium functions
defect none code defect detection in C/C++ data
clone none code clone detection in Java data

For example, if you want to run CodeT5-base model on the code summarization task for Python, you can simply run:

python run_exp.py --model_tag codet5_base --task summarize --sub_task python

Besides, you can specify:

model_dir: where to save fine-tuning checkpoints
res_dir: where to save the performance results 
summary_dir: where to save the training curves
data_num: how many data instances to use, the default -1 is for using the full data
gpu: the index of the GPU to use in the cluster

You can also revise the suggested arguments here or directly customize the exp_with_args.sh bash file. Please refer to the argument flags in configs.py for the full available options. The saved training curves in summary_dir can be visualized using tensorboard. Note that we employ one A100 GPU for all fine-tuning experiments.

How to fine-tune on your own task and dataset?

If you want to fine-tune on your dataset, you can add your own task and sub_task in configs.py (here) and add your data path and the function to read in utils.py (here and here). The read function can be implemented in _utils.py similar to this one. If your task to add is a generation task, you can simply reuse or customize the run_gen.py. For understanding tasks, please refer to run_defect.py and run_clone.py.

Get Involved

Please create a GitHub issue if you have any questions, suggestions, requests or bug-reports. We welcome PRs!

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
Unsupervised Language Modeling at scale for robust sentiment classification

** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.

NVIDIA Corporation 1k Nov 17, 2022
Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any

Little Endian 1 Apr 28, 2022
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

EleutherAI 42 Dec 13, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Erre Quadro Srl 384 Dec 12, 2022
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin

STonKGs 27 Aug 11, 2022
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 217 Dec 05, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
Pre-Training with Whole Word Masking for Chinese BERT

Pre-Training with Whole Word Masking for Chinese BERT

Yiming Cui 7.7k Dec 31, 2022
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022
Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries

GTFONow Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries. Features Automatically escalate privileges using miscon

101 Jan 03, 2023
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022