Learning to Rewrite for Non-Autoregressive Neural Machine Translation

Overview

RewriteNAT

This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressive Neural Machine Translation". RewriteNAT is a iterative NAT model which utilizes a locator component to explicitly learn to rewrite the erroneous translation pieces during iterative decoding.

Dependencies

Preprocessing

All the datasets are tokenized using the scripts from Moses except for Chinese with Jieba tokenizer, and splitted into subword units using BPE. The tokenized datasets are binaried using the script binaried.sh as follows:

python preprocess.py \
    --source-lang ${src} --target-lang ${tgt} \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir data-bin/${dataset} --thresholdtgt 0 --thresholdsrc 0 \ 
    --workers 64 --joined-dictionary

Train

All the models are run on 8 Tesla V100 GPUs for 300,000 updates with an effective batch size of 128,000 tokens apart from En→Fr where we make 500,000 updates to account for the data size. The training scripts train.rewrite.nat.sh is configured as follows:

python train.py \
    data-bin/${dataset} \
    --source-lang ${src} --target-lang ${tgt} \
    --save-dir ${save_dir} \
    --ddp-backend=no_c10d \
    --task translation_lev \
    --criterion rewrite_nat_loss \
    --arch rewrite_nonautoregressive_transformer \
    --noise full_mask \
    ${share_all_embeddings} \
    --optimizer adam --adam-betas '(0.9,0.98)' \
    --lr 0.0005 --lr-scheduler inverse_sqrt \
    --min-lr '1e-09' --warmup-updates 10000 \
    --warmup-init-lr '1e-07' --label-smoothing 0.1 \
    --dropout 0.3 --weight-decay 0.01 \
    --decoder-learned-pos \
    --encoder-learned-pos \
    --length-loss-factor 0.1 \
    --apply-bert-init \
    --log-format 'simple' --log-interval 100 \
    --fixed-validation-seed 7 \ 
    --max-tokens 4000 \
    --save-interval-updates 10000 \
    --max-update ${step} \
    --update-freq 4 \ 
    --fp16 \
    --save-interval ${save_interval} \
    --discriminator-layers 6 \ 
    --train-max-iter ${max_iter} \
    --roll-in-g sample \
    --roll-in-d oracle \
    --imitation-g \
    --imitation-d \
    --discriminator-loss-factor ${discriminator_weight} \
    --no-share-discriminator \
    --generator-scale ${generator_scale} \
    --discriminator-scale ${discriminator_scale} \

Evaluation

We evaluate performance with BLEU for all language pairs, except for En→>Zh, where we use SacreBLEU. The testing scripts test.rewrite.nat.sh is utilized to generate the translations, as follows:

python generate.py \                                            
    data-bin/${dataset} \                                          
    --source-lang ${src} --target-lang ${tgt} \                    
    --gen-subset ${subset} \                                       
    --task translation_lev \                                       
    --path ${save_dir}/${dataset}/checkpoint_average_${suffix}.pt \
    --iter-decode-max-iter ${max_iter} \                           
    --iter-decode-with-beam ${beam} \                              
    --iter-decode-p ${iter_p} \                                    
    --beam 1 --remove-bpe \                                        
    --batch-size 50\                                               
    --print-step \                                                 
    --quiet 

Citation

Please cite as:

@inproceedings{geng-etal-2021-learning,
    title = "Learning to Rewrite for Non-Autoregressive Neural Machine Translation",
    author = "Geng, Xinwei and Feng, Xiaocheng and Qin, Bing",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.265",
    pages = "3297--3308",
}
Owner
Xinwei Geng
Ph.D. student working on improving Neural Machine Translation with Reinforcement Learning @HIT-SCIR
Xinwei Geng
Protein Language Model

ProteinLM We pretrain protein language model based on Megatron-LM framework, and then evaluate the pretrained model results on TAPE (Tasks Assessing P

THUDM 77 Dec 27, 2022
🍊 PAUSE (Positive and Annealed Unlabeled Sentence Embedding), accepted by EMNLP'2021 🌴

PAUSE: Positive and Annealed Unlabeled Sentence Embedding Sentence embedding refers to a set of effective and versatile techniques for converting raw

EQT 21 Dec 15, 2022
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Microsoft 1.1k Dec 17, 2022
Full Spectrum Bioinformatics - a free online text designed to introduce key topics in Bioinformatics using the Python

Full Spectrum Bioinformatics is a free online text designed to introduce key topics in Bioinformatics using the Python programming language. The text is written in interactive Jupyter Notebooks, whic

Jesse Zaneveld 33 Dec 28, 2022
ByT5: Towards a token-free future with pre-trained byte-to-byte models

ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword

Google Research 409 Jan 06, 2023
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023
Experiments in converting wikidata to ftm

FollowTheMoney / Wikidata mappings This repo will contain tools for converting Wikidata entities into FtM schema. Prefixes: https://www.mediawiki.org/

Friedrich Lindenberg 2 Nov 12, 2021
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.

PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer

Vaidotas Šimkus 10 Dec 06, 2022
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Chenyang Huang 37 Jan 04, 2023
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
Neural-Machine-Translation - Implementation of revolutionary machine translation models

Neural Machine Translation Framework: PyTorch Repository contaning my implementa

Utkarsh Jain 1 Feb 17, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

For better performance, you can try NLPGNN, see NLPGNN for more details. BERT-NER Version 2 Use Google's BERT for named entity recognition (CoNLL-2003

Kaiyinzhou 1.2k Dec 26, 2022
Installation, test and evaluation of Scribosermo speech-to-text engine

Scribosermo STT Setup Scribosermo is a LGPL licensed, open-source speech recognition engine to "Train fast Speech-to-Text networks in different langua

Florian Quirin 3 Jun 20, 2022