Learning to Rewrite for Non-Autoregressive Neural Machine Translation

Overview

RewriteNAT

This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressive Neural Machine Translation". RewriteNAT is a iterative NAT model which utilizes a locator component to explicitly learn to rewrite the erroneous translation pieces during iterative decoding.

Dependencies

Preprocessing

All the datasets are tokenized using the scripts from Moses except for Chinese with Jieba tokenizer, and splitted into subword units using BPE. The tokenized datasets are binaried using the script binaried.sh as follows:

python preprocess.py \
    --source-lang ${src} --target-lang ${tgt} \
    --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
    --destdir data-bin/${dataset} --thresholdtgt 0 --thresholdsrc 0 \ 
    --workers 64 --joined-dictionary

Train

All the models are run on 8 Tesla V100 GPUs for 300,000 updates with an effective batch size of 128,000 tokens apart from En→Fr where we make 500,000 updates to account for the data size. The training scripts train.rewrite.nat.sh is configured as follows:

python train.py \
    data-bin/${dataset} \
    --source-lang ${src} --target-lang ${tgt} \
    --save-dir ${save_dir} \
    --ddp-backend=no_c10d \
    --task translation_lev \
    --criterion rewrite_nat_loss \
    --arch rewrite_nonautoregressive_transformer \
    --noise full_mask \
    ${share_all_embeddings} \
    --optimizer adam --adam-betas '(0.9,0.98)' \
    --lr 0.0005 --lr-scheduler inverse_sqrt \
    --min-lr '1e-09' --warmup-updates 10000 \
    --warmup-init-lr '1e-07' --label-smoothing 0.1 \
    --dropout 0.3 --weight-decay 0.01 \
    --decoder-learned-pos \
    --encoder-learned-pos \
    --length-loss-factor 0.1 \
    --apply-bert-init \
    --log-format 'simple' --log-interval 100 \
    --fixed-validation-seed 7 \ 
    --max-tokens 4000 \
    --save-interval-updates 10000 \
    --max-update ${step} \
    --update-freq 4 \ 
    --fp16 \
    --save-interval ${save_interval} \
    --discriminator-layers 6 \ 
    --train-max-iter ${max_iter} \
    --roll-in-g sample \
    --roll-in-d oracle \
    --imitation-g \
    --imitation-d \
    --discriminator-loss-factor ${discriminator_weight} \
    --no-share-discriminator \
    --generator-scale ${generator_scale} \
    --discriminator-scale ${discriminator_scale} \

Evaluation

We evaluate performance with BLEU for all language pairs, except for En→>Zh, where we use SacreBLEU. The testing scripts test.rewrite.nat.sh is utilized to generate the translations, as follows:

python generate.py \                                            
    data-bin/${dataset} \                                          
    --source-lang ${src} --target-lang ${tgt} \                    
    --gen-subset ${subset} \                                       
    --task translation_lev \                                       
    --path ${save_dir}/${dataset}/checkpoint_average_${suffix}.pt \
    --iter-decode-max-iter ${max_iter} \                           
    --iter-decode-with-beam ${beam} \                              
    --iter-decode-p ${iter_p} \                                    
    --beam 1 --remove-bpe \                                        
    --batch-size 50\                                               
    --print-step \                                                 
    --quiet 

Citation

Please cite as:

@inproceedings{geng-etal-2021-learning,
    title = "Learning to Rewrite for Non-Autoregressive Neural Machine Translation",
    author = "Geng, Xinwei and Feng, Xiaocheng and Qin, Bing",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.265",
    pages = "3297--3308",
}
Owner
Xinwei Geng
Ph.D. student working on improving Neural Machine Translation with Reinforcement Learning @HIT-SCIR
Xinwei Geng
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022
Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

CvarAdversarialRL Official code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning". Initial setup Create a virtual

Mathieu Godbout 1 Nov 19, 2021
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
Train BPE with fastBPE, and load to Huggingface Tokenizer.

BPEer Train BPE with fastBPE, and load to Huggingface Tokenizer. Description The BPETrainer of Huggingface consumes a lot of memory when I am training

Lizhuo 1 Dec 23, 2021
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
This repository will contain the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 27, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Awesome Treasure of Transformers Models Collection

💁 Awesome Treasure of Transformers Models for Natural Language processing contains papers, videos, blogs, official repo along with colab Notebooks. 🛫☑️

Ashish Patel 577 Jan 07, 2023
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
PyWorld3 is a Python implementation of the World3 model

The World3 model revisited in Python Install & Hello World3 How to tune your own simulation Licence How to cite PyWorld3 with Bibtex References & ackn

Charles Vanwynsberghe 248 Dec 14, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
This is Assignment1 code for the Web Data Processing System.

This is a Python program to Entity Linking by processing WARC files. We recognize entities from web pages and link them to a Knowledge Base(Wikidata).

3 Dec 04, 2022
Search msDS-AllowedToActOnBehalfOfOtherIdentity

前言 现在进行RBCD的攻击手段主要是搜索mS-DS-CreatorSID,如果机器的创建者是我们可控的话,那就可以修改对应机器的msDS-AllowedToActOnBehalfOfOtherIdentity,利用工具SharpAllowedToAct-Modify 那我们索性也试试搜索所有计算机

Jumbo 26 Dec 05, 2022