A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Overview

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation


This is a Pytorch implementation for the "Chimera" paper Learning Shared Semantic Space for Speech-to-Text Translation https://arxiv.org/abs/2105.03095 (accepted by ACL Findings 2021), which aims to bridge the modality gap by unifying the task of MT (textual Machine Translation) and ST (Speech-to-Text Translation). It has achieved new SOTA performance on all 8 language pairs in MuST-C benchmark, by utilizing an external MT corpus.


This repository is up to now a nightly version, and is bug-prone because of code refactoring. Also it is not fully tested on configurations other than the authors' working environment yet. However, we encourage you to first have a look at the results and model codes to get a general impression of what this project is about.

The code base is forked from FairSeq repository https://github.com/pytorch/fairseq.git (without an actual forking operation) in Septempber 2020. It than lags behind the later updates in FairSeq, and both the codes and checkpoints are not compatible with currect Fairseq version. You will need to modify the model codes for checkpoint configurations if you want to follow the new FairSeq codes.

CONTRIBUTION: You are also more than welcomed to test our code on your machines, and report feedbacks on results, bugs and performance!



Results

Our model (Chimera) achieves new state-of-the-art results on all 8 language pairs on MuST-C:

Direction EN-DE EN-FR EN-RU EN-ES EN-IT EN-RO EN-PT EN-NL
BLEU 26.3 35.6 17.4 30.6 25.0 24.0 30.2 29.2

Chimera novelly learns M distinct "memories" to store specific types of semantic information from both audio and text inputs. Shown below is a visualization of the "Memories" learned by Chimera-16, which is a variant with M = 16. Each learned cluster represents a individual type of information, while each marker is a sentence sample. "+" and "." means text and audio samples, respectively.

We can see more clearly from below (left) that memories learn a well-clustered semantic space, forming a "semantic" alignment (rather than spatial) between audio and text inputs, while ignoring the modality differences.

On the right, we zoom in to focus one cluster in specific, and it can be easily observed that the vectors are well structured as well, with inputs with (probably one of) similar semantic features close in space to each other.

We can even focus on one instance of translation, and see how the memories works. Shown below visualizes the alignment between audio attention and text attention, which tightly gather around the diagonal line. Different colors represents different memories, which attend to different semantic segments of sentence / audio as shown in the figure.



Trained Checkpoints

Our trained checkpoints are available at:

Translation Direction filename External url
English-to-Deutsch Chimera_EN2DE.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2DE.pt
English-to-French Chimera_EN2FR.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2FR.pt
English-to-Russian Chimera_EN2RU.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2RU.pt
English-to-Espanol Chimera_EN2ES.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2ES.pt
English-to-Italiano Chimera_EN2IT.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2IT.pt
English-to-Romanian Chimera_EN2RO.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2RO.pt
English-to-Portuguese Chimera_EN2PT.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2PT.pt
English-to-Dutch Chimera_EN2NL.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2NL.pt



Interactive Translation

You can download any one checkpoint mentioned above to local, and translate local audios (only .wav files supported) to another language! To do this, you only need to run the model in an interactive mode. For example, you want to translate from English to Deutsh (DE) with an already trained checkpoint at $CHECKPOINT:

bash run.sh --script chimera/scripts/interactive-en2any-ST.sh \
    --target de --checkpoint $CHECKPOINT

The program will prompt an input file name like this:

2021-04-02 10:00:00 | INFO | fairseq_cli.interactive | Type the input sentence and press return:

After inputing the file name, the program will translate outputs like:

H-0     -1.0      ▁Nach ▁dem ...
D-0     -1.0      Nach dem ...
P-0     -1.0000 -1.0000 ...

NOTE: Do not input a file too large. Normally the model can translate 1~5 normal-length sentences in one time. If the input sentence is too long, the program could crash.

To exit the interactive mode, you only need to input an invalid file name.

To translate to other languages, remember to replace de with their language codes (in lower case):

Language Code
Deutsch (German) DE / de
French FR / fr
Espanol (Spanish) ES / es
Russian RU / ru
Italiano (Italian) IT / it
Romanian RO / ro
Portuguese PT / pt
Dutch (Netherlands) NL / nl



Training a Model on MuST-C

Let's first take a look at training an English-to-Deutsch model as an example.

Data Preparation

  1. Prerequisites and Configuration First check that requirements are met for pip in requirements.txt and for apt in apt-requirements.txt. Some items in the two files may be redundant, but we haven't got time to check and eliminate them.

For configuration, please set the global variables of $WMT_ROOT, $MUSTC_ROOT and SAVE_ROOT These will be where to put the datasets and checkpoints. For example:

export MUSTC_ROOT="speech_data/mustc"
export WMT_ROOT="wmt_data"
export SAVE_ROOT="checkpoints"
export target=de
mkdir -p $MUSTC_ROOT $WMT_ROOT $SAVE_ROOT

NOTE: This simple configuration is a prerequisite for most of the following steps. Here export target=de means the translation direction is English to Deutsch.

  1. Download and uncompress the EN-to-DE MuST-C dataset to $MUSTC_ROOT/en-$target. TIP: to speed up uncompressing a file too large, you can replace tar xzvf with: pigz -dc $TARFILE | tar xvf -

  2. Download the WMT to $WMT_ROOT/orig via:

bash chimera/prepare_data/download-wmt.sh --wmt14 --data-dir $WMT_ROOT --target $target

This may sometimes be too slow as the connection to statmt.org is not steady in some places. In this case you can turn to other faster download sources if possible.

  1. Append MuST-C text data to $WMT_ROOT, and prepare the datasets and produce a joint spm dictionary:
bash chimera/prepare_data/prepare-wmt-en2any.sh \
    --data-dir $WMT_ROOT --wmt14 --original-dev \
    --external mustc --target $target --subword spm
python3 chimera/prepare_data/prep_mustc_data.py \
    --data-root $MUSTC_ROOT --task wave \
    --ignore_fbank80 --joint_spm wmt14-en-$target-spm \
    --languages $target --vocab-type unigram --vocab-size 10000

NOTE: if the first command is executed correctly, you will see one line in the output:

Existing spm dictionary chimera/resources/wmt14-en-de-spm detected. Copying...

If not, the program will still produce one dictionary on the run and reports No existing spm detected. Learning unigram spm on wmt14_en_de/tmp/train.de-en ... This is okay in most cases, with the only risk being a potential mismatch to already trained checkpoints we provided.

Training

To reproduce the results in the last row in Figure 1 in paper, you can directly use the training scripts available as follows.

  1. Pre-training on MT data:
bash run.sh --script chimera/scripts/train-en2any-MT.sh \
    --target $target --dataset wmt14 --max_updates 500000

If you like, you can specify some arguments other than default values. The default setting is --seed 1 --num-gpus 8, which makes the command look like bash run.sh --script chimera/scripts/train-en2$target-MT.sh --seed 1 --num-gpus 8. Value for --num-gpus is recommended to be power of 2, and smaller than 8, e.g. {1, 2, 4, 8}.

  1. Fine-tuning on MuST-C data:
bash run.sh --script chimera/scripts/train-en2any-ST.sh \
    --target $target --dataset wmt14 --max_updates 150000

This script moves the MT-pre-trained model from ${MT_SAVE_DIR}/checkpoint_best.pt to ${ST_SAVE_DIR} as a initialization for ST fine-tuning.

Optionally, if you need to resume a single ST training, you can add argument --resume to the command to avoid overwriting the existing ${ST_SAVE_DIR}/checkpoint_last.pt.

The scripts in step 4 and 5 forks a separate background evaluation process while running. The process monitors $MT_SAVE_ROOT or $ST_SAVE_ROOT and evaluates any new checkpoints. Don't worry, it will be automatically killed after the training finishes, unless the script is Ctrl-C'ed, in which case, you can manually raise the suicide flag by touch chimera/tools/auto-generate-suicide.code to kill the background generation process.

Note that this automatic process only evaluates a single checkpoint (with no averaging), and with a low beam width.

  1. Averaging Checkpoints and Evaluate It

Suppose the best ST checkpoint is at epoch $BEST_EPOCH, and we want to averaging 7 checkpoints around it.

python3 chimera/tools/eval-average-checkpoint.py \
    --ckpt-dir $ST_SAVE_ROOT --number-of-ckpts 7 \
    --center-of-ckpts $BEST_EPOCH

Other Language Pairs

For language pairs English-to-{French, Russian, Espanol}, you only need to replace the export target=de with {fr, ru, es} in step 0, and then run the steps 1~5.

For language pairs English-to-{Italiano, Portuguese, Dutch, Romanian}, the MT data is different, so we need to modify Step 2 and 3. All other Steps remains unchanged.

English to Romanian

For Romanian, we use WMT16 corpora in our paper.

The Step 2 changes to

bash chimera/prepare_data/download-wmt.sh --wmt16 --data-dir $WMT_ROOT --target ro

Step 3 remains unchanged.

English to {Italiano, Portuguese, Dutch}

These language pairs uses OPUS100 as external MT corpora.

The Step 2 changes to

bash chimera/prepare_data/download-opus100.sh --data-dir $WMT_ROOT

Step 3 changes to

bash chimera/prepare_data/prepare-opus100-en2any.sh \
    --data-dir $WMT_ROOT --original-dev \
    --external mustc --target $target --subword spm
python3 chimera/prepare_data/prep_mustc_data.py \
    --data-root $MUSTC_ROOT --task wave \
    --ignore_fbank80 --joint_spm wmt14-en-$target-spm \
    --languages $target --vocab-type unigram --vocab-size 10000

Actually, only the first command of Step 3 changes.

Evaluating a Checkpoint

You can also manually evaluate the performance of any one checkpoint on MuST-C test set. Suppose the path to your checkpoint is $CHECKPOINT

target=de bash chimera/generate/generate-mustc-final.sh $CHECKPOINT



License

Part of codes (especially codes outside chimera/) is adapted from FAIRSEQ code base, therefore carrying the MIT License of its original codes. See NOTICE.md for more details.

Citation

Please cite as:

@article{han2021learning,
  title={Learning Shared Semantic Space for Speech-to-Text Translation},
  author={Han, Chi and Wang, Mingxuan and Ji, Heng and Li, Lei},
  journal={arXiv preprint arXiv:2105.03095},
  year={2021}
}
Owner
Chi Han
CS Graduate student at UIUC.
Chi Han
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
IEEEXtreme15.0 Questions And Answers

IEEEXtreme15.0 Questions And Answers IEEEXtreme is a global challenge in which teams of IEEE Student members – advised and proctored by an IEEE member

Dilan Perera 15 Oct 24, 2022
Mlcode - Continuous ML API Integrations

mlcode Basic APIs for ML applications. Django REST Application Contains REST API

Sujith S 1 Jan 01, 2022
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
Lattice methods in TensorFlow

TensorFlow Lattice TensorFlow Lattice is a library that implements constrained and interpretable lattice based models. It is an implementation of Mono

504 Dec 20, 2022
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
WikiPron - a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary

WikiPron WikiPron is a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary, as well as a database of pronuncia

213 Jan 01, 2023
초성 해석기 based on ko-BART

초성 해석기 개요 한국어 초성만으로 이루어진 문장을 입력하면, 완성된 문장을 예측하는 초성 해석기입니다. 초성: ㄴㄴ ㄴㄹ ㅈㅇㅎ 예측 문장: 나는 너를 좋아해 모델 모델은 SKT-AI에서 공개한 Ko-BART를 이용합니다. 데이터 문장 단위로 이루어진 아무 코퍼스나

Dawoon Jung 29 Oct 28, 2022
Lingtrain Aligner — ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Sergei Averkiev 76 Dec 14, 2022
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

snoop2head 14 Nov 15, 2022
A sentence aligner for comparable corpora

About Yalign is a tool for extracting parallel sentences from comparable corpora. Statistical Machine Translation relies on parallel corpora (eg.. eur

Machinalis 128 Aug 24, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023