TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.

Overview

What is TunBERT?

People in Tunisia use the Tunisian dialect in their daily communications, in most of their media (TV, radio, songs, etc), and on the internet (social media, forums). Yet, this dialect is not standardized which means there is no unique way for writing and speaking it. Added to that, it has its proper lexicon, phonetics, and morphological structures. The need for a robust language model for the Tunisian dialect has become crucial in order to develop NLP-based applications (translation, information retrieval, sentiment analysis, etc).

BERT (Bidirectional Encoder Representations from Transformers) is a method to pre-train general purpose natural language models in an unsupervised fashion and then fine-tune them on specific downstream tasks with labelled datasets. This method was first implemented by Google and gives state-of-the-art results on many tasks as it's the first deeply bidirectional NLP pre-training system.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (SA), Tunisian Dialect Identification (TDI) and Reading Comprehension Question-Answering (RCQA).

What has been released in this repository?

This repository includes the code for fine-tuning TunBERT on the three downstream tasks: Sentiment Analysis (SA), Tunisian Dialect Identification (TDI) and Reading Comprehension Question-Answering (RCQA). This will help the community reproduce our work and collaborate continuously. We also released the two pre-trained new models: TunBERT Pytorch and TunBERT TensorFlow. Finally, we open source the fine-tuning datasets used for Tunisian Dialect Identification (TDI) and Reading Comprehension Question-Answering (RCQA)

About the Pre-trained models

TunBERT Pytorch model is based on BERT’s Pytorch implementation from NVIDIA NeMo. The model was pre-trained using 4 NVIDIA Tesla V100 GPUs on a dataset of 500k Tunisian social media comments written in Arabic letters. The pretrained model consists of 12 layers of self-attention modules. Each module is made with 12 heads of self-attention with 768 hidden-size. Furthermore, an Adam optimizer was used, with a learning rate of 1e-4, a batch size of 128, a maximum sequence length of 128 and a masking probability of 15%. Cosine annealing was used for a learning rate scheduling with a warm-up ratio of 0.01.

Similarly, a second TunBERT TensorFlow model was trained using TensorFlow implementation from Google. We use the same compute power for pre-training this model (4 NVIDIA Tesla V100 GPUs) while keeping the same hyper-parameters: A learning rate of 1e-4, a batch size of 128 and a maximum sequence length of 128.

The two models are available for download through:

For TunBERT PyTorch:

For TunBERT TensorFlow:

About the Finetuning datasets

Tunisian Sentiment Analysis

  • Tunisian Sentiment Analysis Corpus (TSAC) obtained from Facebook comments about popular TV shows. The TSAC dataset contains both Arabic and latin characters. Hence, we used only Arabic comments.

Dataset link: TSAC

Reference : Salima Medhaffar, Fethi Bougares, Yannick Estève and Lamia Hadrich-Belguith. Sentiment analysis of Tunisian dialects: Linguistic Resources and Experiments. WANLP 2017. EACL 2017

  • Tunisian Election Corpus (TEC) obtained from tweets about Tunisian elections in 2014.

Dataset link: TEC

Reference: Karim Sayadi, Marcus Liwicki, Rolf Ingold, Marc Bui. Tunisian Dialect and Modern Standard Arabic Dataset for Sentiment Analysis : Tunisian Election Context, IEEE-CICLing (Computational Linguistics and Intelligent Text Processing) Intl. conference, Konya, Turkey, 7-8 Avril 2016.

Tunisian Dialect Identification

Tunisian Arabic Dialects Identification(TADI): It is a binary classification task consisting of classifying Tunisian dialect and Non Tunisian dialect from an Arabic dialectical dataset.

Tunisian Algerian Dialect(TAD): It is a binary classification task consisting of classifying Tunisian dialect and Algerian dialect from an Arabic dialectical dataset.

The two datasets are available for download for research purposes:

TADI:

TAD:

Reading Comprehension Question-Answering

For this task, we built TRCD (Tunisian Reading Comprehension Dataset) as a Question-Answering dataset for Tunisian dialect. We used a dialectal version of the Tunisian constitution following the guideline in this article. It is composed of 144 documents where each document has exactly 3 paragraphs and three Question-Answer pairs are assigned to each paragraph. Questions were formulated by four Tunisian native speaker annotators and each question should be paired with a paragraph.

We made the dataset publicly available for research purposes:

TRCD:

Install

We use:

  • conda to setup our environment,
  • and python 3.7.9

Setup our environment:

# Clone the repo
git clone https://github.com/instadeepai/tunbert.git
cd tunbert

# Create a conda env
conda env create -f environment_torch.yml #bert-nvidia
conda env create -f environment_tf2.yml #bert-google

# Activate conda env
conda activate tunbert-torch #bert-nvidia
conda activate tf2-google #bert-google

# Install pre-commit hooks
pre-commit install

# Run all pre-commit checks (without committing anything)
pre-commit run --all-files

Project Structure

This is the folder structure of the project:

README.md             # This file :)
.gitlab-ci.yml        # CI with gitlab
.gitlab/              # Gitlab specific 
.pre-commit-config.yml  # The checks to run before every commit
environment_torch.yml       # contains the conda environment definition 
environment_tf2.yml       # contains the conda environment definition for pre-training bert-google
...

dev-data/             # data sample
    sentiment_analysis_tsac/
    dialect_classification_tadi/
    question_answering_trcd/

models/               # contains the different models to used 
    bert-google/
    bert-nvidia/

TunBERT-PyTorch

Fine-tune TunBERT-PyTorch on the Sentiment Analysis (SA) task

To fine-tune TunBERT-PyTorch on the SA task, you need to:

  • Run the following command-line:
python models/bert-nvidia/bert_finetuning_SA_DC.py --config-name "sentiment_analysis_config" model.language_model.lm_checkpoint="/path/to/checkpoints/PretrainingBERTFromText--end.ckpt" model.train_ds.file_path="/path/to/train.tsv" model.validation_ds.file_path="/path/to/valid.tsv" model.test_ds.file_path="/path/to/test.tsv"

Fine-tune TunBERT-PyTorch on the Dialect Classification (DC) task

To fine-tune TunBERT-PyTorch on the DC task, you need to:

  • Run the following command-line:
python models/bert-nvidia/bert_finetuning_SA_DC.py --config-name "dialect_classification_config" model.language_model.lm_checkpoint="/path/to/checkpoints/PretrainingBERTFromText--end.ckpt" model.train_ds.file_path="/path/to/train.tsv" model.validation_ds.file_path="/path/to/valid.tsv" model.test_ds.file_path="/path/to/test.tsv"

Fine-tune TunBERT-PyTorch on the Question Answering (QA) task

To fine-tune TunBERT-PyTorch on the QA task, you need to:

  • Run the following command-line:
python models/bert-nvidia/bert_finetuning_QA.py --config-name "question_answering_config" model.language_model.lm_checkpoint="/path/to/checkpoints/PretrainingBERTFromText--end.ckpt" model.train_ds.file="/path/to/train.json" model.validation_ds.file="/path/to/val.json" model.test_ds.file="/path/to/test.json"

TunBERT-TensorFlow

Fine-tune TunBERT-TensorFlow on the Sentiment Analysis (SA) or Dialect Classification (DC) Task:

To fine-tune TunBERT-TensorFlow for a SA task or, you need to:

  • Specify the BERT_FOLDER_NAME in models/bert-google/finetuning_sa_tdid.sh.

    BERT_FOLDER_NAME should contain the config and vocab files and the checkpoint of your language model

  • Specify the DATA_FOLDER_NAME in models/bert-google/finetuning_sa_tdid.sh

  • Run:

bash models/bert-google/finetuning_sa_tdid.sh

Fine-tune TunBERT-TensorFlow on the Question Answering (QA) Task:

To fine-tune TunBERT-TensorFlow for a QA task, you need to:

  • Specify the BERT_FOLDER_NAME in models/bert-google/finetuning_squad.sh.

    BERT_FOLDER_NAME should contain the config and vocab files and the checkpoint of your language model

  • Specify the DATA_FOLDER_NAME in models/bert-google/finetuning_squad.sh

  • Run:

bash models/bert-google/finetuning_squad.sh

You can view the results, by launching tensorboard from your logging directory.

e.g. tensorboard --logdir=OUTPUT__FOLDER_NAME

Contact information

InstaDeep

iCompass

Owner
InstaDeep Ltd
InstaDeep offers a host of Enterprise AI products, ranging from GPU-accelerated insights to self-learning decision making systems.
InstaDeep Ltd
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

wangle 823 Dec 28, 2022
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries

GTFONow Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries. Features Automatically escalate privileges using miscon

101 Jan 03, 2023
AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

AEC_DeepModel - Deep learning based acoustic echo cancellation baseline code

凌逆战 75 Dec 05, 2022
The aim of this task is to predict someone's English proficiency based on a text input.

English_proficiency_prediction_NLP The aim of this task is to predict someone's English proficiency based on a text input. Using the The NICT JLE Corp

1 Dec 13, 2021
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
Saptak Bhoumik 14 May 24, 2022
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023
1 Jun 28, 2022
Generating new names based on trends in data using GPT2 (Transformer network)

MLOpsNameGenerator Overall Goal The goal of the project is to develop a model that is capable of creating Pokémon names based on its description, usin

Gustav Lang Moesmand 2 Jan 10, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

317 Dec 23, 2022
Help you discover excellent English projects and get rid of disturbing by other spoken language

GitHub English Top Charts 「Help you discover excellent English projects and get

GrowingGit 544 Jan 09, 2023
NLP, before and after spaCy

textacy: NLP, before and after spaCy textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the hig

Chartbeat Labs Projects 2k Jan 04, 2023
WikiPron - a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary

WikiPron WikiPron is a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary, as well as a database of pronuncia

213 Jan 01, 2023
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Vladimir Larin 7 Nov 15, 2022
Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

2 Dec 29, 2022